Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgt0d | GIF version |
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
mulgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
mulgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
Ref | Expression |
---|---|
mulgt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mulgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | mulgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
5 | mulgt0 8006 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 1239 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℝcr 7785 0cc0 7786 · cmul 7791 < clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-mulrcl 7885 ax-rnegex 7895 ax-pre-mulgt0 7903 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-pnf 7968 df-mnf 7969 df-ltxr 7971 |
This theorem is referenced by: ltmul1a 8522 mulge0 8550 recgt0 8778 prodgt0gt0 8779 prodge0 8782 modqmulnn 10310 modqdi 10360 cos12dec 11741 tangtx 13828 |
Copyright terms: Public domain | W3C validator |