![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgt0d | GIF version |
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
mulgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
mulgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
Ref | Expression |
---|---|
mulgt0d | ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mulgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | mulgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
5 | mulgt0 8096 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 1250 | 1 ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℝcr 7873 0cc0 7874 · cmul 7879 < clt 8056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-mulrcl 7973 ax-rnegex 7983 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 |
This theorem is referenced by: ltmul1a 8612 mulge0 8640 recgt0 8871 prodgt0gt0 8872 prodge0 8875 modqmulnn 10416 modqdi 10466 cos12dec 11914 tangtx 15014 |
Copyright terms: Public domain | W3C validator |