| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqmulnn | Unicode version | ||
| Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqmulnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnq 9784 |
. . . . . 6
| |
| 2 | 1 | 3ad2ant1 1021 |
. . . . 5
|
| 3 | flqcl 10448 |
. . . . . . 7
| |
| 4 | zq 9777 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 5 | 3ad2ant2 1022 |
. . . . 5
|
| 7 | qmulcl 9788 |
. . . . 5
| |
| 8 | 2, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | qre 9776 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | simp2 1001 |
. . . . . 6
| |
| 12 | qmulcl 9788 |
. . . . . 6
| |
| 13 | 2, 11, 12 | syl2anc 411 |
. . . . 5
|
| 14 | 13 | flqcld 10452 |
. . . 4
|
| 15 | 14 | zred 9525 |
. . 3
|
| 16 | nnmulcl 9087 |
. . . . . . 7
| |
| 17 | nnq 9784 |
. . . . . . 7
| |
| 18 | 16, 17 | syl 14 |
. . . . . 6
|
| 19 | 18 | 3adant2 1019 |
. . . . 5
|
| 20 | qre 9776 |
. . . . 5
| |
| 21 | 19, 20 | syl 14 |
. . . 4
|
| 22 | simp1 1000 |
. . . . . . . . . 10
| |
| 23 | 22 | nncnd 9080 |
. . . . . . . . 9
|
| 24 | simp3 1002 |
. . . . . . . . . 10
| |
| 25 | 24 | nncnd 9080 |
. . . . . . . . 9
|
| 26 | 22 | nnap0d 9112 |
. . . . . . . . 9
|
| 27 | 24 | nnap0d 9112 |
. . . . . . . . 9
|
| 28 | 23, 25, 26, 27 | mulap0d 8761 |
. . . . . . . 8
|
| 29 | 0z 9413 |
. . . . . . . . . 10
| |
| 30 | zq 9777 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
|
| 32 | qapne 9790 |
. . . . . . . . 9
| |
| 33 | 19, 31, 32 | sylancl 413 |
. . . . . . . 8
|
| 34 | 28, 33 | mpbid 147 |
. . . . . . 7
|
| 35 | qdivcl 9794 |
. . . . . . 7
| |
| 36 | 8, 19, 34, 35 | syl3anc 1250 |
. . . . . 6
|
| 37 | 36 | flqcld 10452 |
. . . . 5
|
| 38 | 37 | zred 9525 |
. . . 4
|
| 39 | 21, 38 | remulcld 8133 |
. . 3
|
| 40 | nnnn0 9332 |
. . . . 5
| |
| 41 | flqmulnn0 10474 |
. . . . 5
| |
| 42 | 40, 41 | sylan 283 |
. . . 4
|
| 43 | 22, 11, 42 | syl2anc 411 |
. . 3
|
| 44 | 10, 15, 39, 43 | lesub1dd 8664 |
. 2
|
| 45 | 22 | nnred 9079 |
. . . 4
|
| 46 | 24 | nnred 9079 |
. . . 4
|
| 47 | 22 | nngt0d 9110 |
. . . 4
|
| 48 | 24 | nngt0d 9110 |
. . . 4
|
| 49 | 45, 46, 47, 48 | mulgt0d 8225 |
. . 3
|
| 50 | modqval 10501 |
. . 3
| |
| 51 | 8, 19, 49, 50 | syl3anc 1250 |
. 2
|
| 52 | zq 9777 |
. . . . 5
| |
| 53 | 14, 52 | syl 14 |
. . . 4
|
| 54 | modqval 10501 |
. . . 4
| |
| 55 | 53, 19, 49, 54 | syl3anc 1250 |
. . 3
|
| 56 | 16 | 3adant2 1019 |
. . . . . . 7
|
| 57 | flqdiv 10498 |
. . . . . . 7
| |
| 58 | 13, 56, 57 | syl2anc 411 |
. . . . . 6
|
| 59 | flqdiv 10498 |
. . . . . . . 8
| |
| 60 | 59 | 3adant1 1018 |
. . . . . . 7
|
| 61 | 3 | zcnd 9526 |
. . . . . . . . . 10
|
| 62 | 11, 61 | syl 14 |
. . . . . . . . 9
|
| 63 | 62, 25, 23, 27, 26 | divcanap5d 8920 |
. . . . . . . 8
|
| 64 | 63 | fveq2d 5598 |
. . . . . . 7
|
| 65 | qcn 9785 |
. . . . . . . . . 10
| |
| 66 | 11, 65 | syl 14 |
. . . . . . . . 9
|
| 67 | 66, 25, 23, 27, 26 | divcanap5d 8920 |
. . . . . . . 8
|
| 68 | 67 | fveq2d 5598 |
. . . . . . 7
|
| 69 | 60, 64, 68 | 3eqtr4rd 2250 |
. . . . . 6
|
| 70 | 58, 69 | eqtrd 2239 |
. . . . 5
|
| 71 | 70 | oveq2d 5978 |
. . . 4
|
| 72 | 71 | oveq2d 5978 |
. . 3
|
| 73 | 55, 72 | eqtrd 2239 |
. 2
|
| 74 | 44, 51, 73 | 3brtr4d 4086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-n0 9326 df-z 9403 df-q 9771 df-rp 9806 df-fl 10445 df-mod 10500 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |