ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn Unicode version

Theorem modqmulnn 10451
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9724 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
213ad2ant1 1020 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  QQ )
3 flqcl 10380 . . . . . . 7  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
4 zq 9717 . . . . . . 7  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
53, 4syl 14 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  QQ )
653ad2ant2 1021 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  QQ )
7 qmulcl 9728 . . . . 5  |-  ( ( N  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( N  x.  ( |_ `  A ) )  e.  QQ )
82, 6, 7syl2anc 411 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  QQ )
9 qre 9716 . . . 4  |-  ( ( N  x.  ( |_
`  A ) )  e.  QQ  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
108, 9syl 14 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
11 simp2 1000 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  QQ )
12 qmulcl 9728 . . . . . 6  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
132, 11, 12syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  A )  e.  QQ )
1413flqcld 10384 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  ZZ )
1514zred 9465 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  RR )
16 nnmulcl 9028 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  NN )
17 nnq 9724 . . . . . . 7  |-  ( ( N  x.  M )  e.  NN  ->  ( N  x.  M )  e.  QQ )
1816, 17syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  QQ )
19183adant2 1018 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  QQ )
20 qre 9716 . . . . 5  |-  ( ( N  x.  M )  e.  QQ  ->  ( N  x.  M )  e.  RR )
2119, 20syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  RR )
22 simp1 999 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  NN )
2322nncnd 9021 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  CC )
24 simp3 1001 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  NN )
2524nncnd 9021 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  CC )
2622nnap0d 9053 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N #  0 )
2724nnap0d 9053 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M #  0 )
2823, 25, 26, 27mulap0d 8702 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M ) #  0 )
29 0z 9354 . . . . . . . . . 10  |-  0  e.  ZZ
30 zq 9717 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3129, 30ax-mp 5 . . . . . . . . 9  |-  0  e.  QQ
32 qapne 9730 . . . . . . . . 9  |-  ( ( ( N  x.  M
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( N  x.  M ) #  0  <->  ( N  x.  M )  =/=  0
) )
3319, 31, 32sylancl 413 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
) #  0  <->  ( N  x.  M )  =/=  0
) )
3428, 33mpbid 147 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  =/=  0 )
35 qdivcl 9734 . . . . . . 7  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  ( N  x.  M )  =/=  0 )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
368, 19, 34, 35syl3anc 1249 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
3736flqcld 10384 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  ZZ )
3837zred 9465 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  RR )
3921, 38remulcld 8074 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) )  e.  RR )
40 nnnn0 9273 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
41 flqmulnn0 10406 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4240, 41sylan 283 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4322, 11, 42syl2anc 411 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  <_ 
( |_ `  ( N  x.  A )
) )
4410, 15, 39, 43lesub1dd 8605 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )  <_  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
4522nnred 9020 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  RR )
4624nnred 9020 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  RR )
4722nngt0d 9051 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  N )
4824nngt0d 9051 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  M )
4945, 46, 47, 48mulgt0d 8166 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  ( N  x.  M
) )
50 modqval 10433 . . 3  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  0  < 
( N  x.  M
) )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
518, 19, 49, 50syl3anc 1249 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
52 zq 9717 . . . . 5  |-  ( ( |_ `  ( N  x.  A ) )  e.  ZZ  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
5314, 52syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
54 modqval 10433 . . . 4  |-  ( ( ( |_ `  ( N  x.  A )
)  e.  QQ  /\  ( N  x.  M
)  e.  QQ  /\  0  <  ( N  x.  M ) )  -> 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
)  =  ( ( |_ `  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( |_ `  ( N  x.  A )
)  /  ( N  x.  M ) ) ) ) ) )
5553, 19, 49, 54syl3anc 1249 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) ) ) )
56163adant2 1018 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  NN )
57 flqdiv 10430 . . . . . . 7  |-  ( ( ( N  x.  A
)  e.  QQ  /\  ( N  x.  M
)  e.  NN )  ->  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) )  =  ( |_ `  ( ( N  x.  A )  /  ( N  x.  M ) ) ) )
5813, 56, 57syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  A
)  /  ( N  x.  M ) ) ) )
59 flqdiv 10430 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  M ) )  =  ( |_
`  ( A  /  M ) ) )
60593adant1 1017 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  A )  /  M ) )  =  ( |_ `  ( A  /  M ) ) )
613zcnd 9466 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  CC )
6211, 61syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  CC )
6362, 25, 23, 27, 26divcanap5d 8861 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  =  ( ( |_ `  A )  /  M
) )
6463fveq2d 5565 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( |_ `  A
)  /  M ) ) )
65 qcn 9725 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
6611, 65syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  CC )
6766, 25, 23, 27, 26divcanap5d 8861 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  A
)  /  ( N  x.  M ) )  =  ( A  /  M ) )
6867fveq2d 5565 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  ( A  /  M ) ) )
6960, 64, 683eqtr4rd 2240 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7058, 69eqtrd 2229 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7170oveq2d 5941 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) )  =  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )
7271oveq2d 5941 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) ) ) )  =  ( ( |_
`  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7355, 72eqtrd 2229 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7444, 51, 733brtr4d 4066 1  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214   # cap 8625    / cdiv 8716   NNcn 9007   NN0cn0 9266   ZZcz 9343   QQcq 9710   |_cfl 10375    mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator