ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn Unicode version

Theorem modqmulnn 10519
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9784 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
213ad2ant1 1021 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  QQ )
3 flqcl 10448 . . . . . . 7  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
4 zq 9777 . . . . . . 7  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
53, 4syl 14 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  QQ )
653ad2ant2 1022 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  QQ )
7 qmulcl 9788 . . . . 5  |-  ( ( N  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( N  x.  ( |_ `  A ) )  e.  QQ )
82, 6, 7syl2anc 411 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  QQ )
9 qre 9776 . . . 4  |-  ( ( N  x.  ( |_
`  A ) )  e.  QQ  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
108, 9syl 14 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
11 simp2 1001 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  QQ )
12 qmulcl 9788 . . . . . 6  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
132, 11, 12syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  A )  e.  QQ )
1413flqcld 10452 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  ZZ )
1514zred 9525 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  RR )
16 nnmulcl 9087 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  NN )
17 nnq 9784 . . . . . . 7  |-  ( ( N  x.  M )  e.  NN  ->  ( N  x.  M )  e.  QQ )
1816, 17syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  QQ )
19183adant2 1019 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  QQ )
20 qre 9776 . . . . 5  |-  ( ( N  x.  M )  e.  QQ  ->  ( N  x.  M )  e.  RR )
2119, 20syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  RR )
22 simp1 1000 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  NN )
2322nncnd 9080 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  CC )
24 simp3 1002 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  NN )
2524nncnd 9080 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  CC )
2622nnap0d 9112 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N #  0 )
2724nnap0d 9112 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M #  0 )
2823, 25, 26, 27mulap0d 8761 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M ) #  0 )
29 0z 9413 . . . . . . . . . 10  |-  0  e.  ZZ
30 zq 9777 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3129, 30ax-mp 5 . . . . . . . . 9  |-  0  e.  QQ
32 qapne 9790 . . . . . . . . 9  |-  ( ( ( N  x.  M
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( N  x.  M ) #  0  <->  ( N  x.  M )  =/=  0
) )
3319, 31, 32sylancl 413 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
) #  0  <->  ( N  x.  M )  =/=  0
) )
3428, 33mpbid 147 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  =/=  0 )
35 qdivcl 9794 . . . . . . 7  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  ( N  x.  M )  =/=  0 )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
368, 19, 34, 35syl3anc 1250 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
3736flqcld 10452 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  ZZ )
3837zred 9525 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  RR )
3921, 38remulcld 8133 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) )  e.  RR )
40 nnnn0 9332 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
41 flqmulnn0 10474 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4240, 41sylan 283 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4322, 11, 42syl2anc 411 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  <_ 
( |_ `  ( N  x.  A )
) )
4410, 15, 39, 43lesub1dd 8664 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )  <_  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
4522nnred 9079 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  RR )
4624nnred 9079 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  RR )
4722nngt0d 9110 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  N )
4824nngt0d 9110 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  M )
4945, 46, 47, 48mulgt0d 8225 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  ( N  x.  M
) )
50 modqval 10501 . . 3  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  0  < 
( N  x.  M
) )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
518, 19, 49, 50syl3anc 1250 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
52 zq 9777 . . . . 5  |-  ( ( |_ `  ( N  x.  A ) )  e.  ZZ  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
5314, 52syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
54 modqval 10501 . . . 4  |-  ( ( ( |_ `  ( N  x.  A )
)  e.  QQ  /\  ( N  x.  M
)  e.  QQ  /\  0  <  ( N  x.  M ) )  -> 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
)  =  ( ( |_ `  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( |_ `  ( N  x.  A )
)  /  ( N  x.  M ) ) ) ) ) )
5553, 19, 49, 54syl3anc 1250 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) ) ) )
56163adant2 1019 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  NN )
57 flqdiv 10498 . . . . . . 7  |-  ( ( ( N  x.  A
)  e.  QQ  /\  ( N  x.  M
)  e.  NN )  ->  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) )  =  ( |_ `  ( ( N  x.  A )  /  ( N  x.  M ) ) ) )
5813, 56, 57syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  A
)  /  ( N  x.  M ) ) ) )
59 flqdiv 10498 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  M ) )  =  ( |_
`  ( A  /  M ) ) )
60593adant1 1018 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  A )  /  M ) )  =  ( |_ `  ( A  /  M ) ) )
613zcnd 9526 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  CC )
6211, 61syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  CC )
6362, 25, 23, 27, 26divcanap5d 8920 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  =  ( ( |_ `  A )  /  M
) )
6463fveq2d 5598 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( |_ `  A
)  /  M ) ) )
65 qcn 9785 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
6611, 65syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  CC )
6766, 25, 23, 27, 26divcanap5d 8920 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  A
)  /  ( N  x.  M ) )  =  ( A  /  M ) )
6867fveq2d 5598 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  ( A  /  M ) ) )
6960, 64, 683eqtr4rd 2250 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7058, 69eqtrd 2239 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7170oveq2d 5978 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) )  =  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )
7271oveq2d 5978 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) ) ) )  =  ( ( |_
`  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7355, 72eqtrd 2239 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7444, 51, 733brtr4d 4086 1  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4054   ` cfv 5285  (class class class)co 5962   CCcc 7953   RRcr 7954   0cc0 7955    x. cmul 7960    < clt 8137    <_ cle 8138    - cmin 8273   # cap 8684    / cdiv 8775   NNcn 9066   NN0cn0 9325   ZZcz 9402   QQcq 9770   |_cfl 10443    mod cmo 10499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-n0 9326  df-z 9403  df-q 9771  df-rp 9806  df-fl 10445  df-mod 10500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator