ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn Unicode version

Theorem modqmulnn 10360
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9651 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
213ad2ant1 1020 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  QQ )
3 flqcl 10291 . . . . . . 7  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
4 zq 9644 . . . . . . 7  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
53, 4syl 14 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  QQ )
653ad2ant2 1021 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  QQ )
7 qmulcl 9655 . . . . 5  |-  ( ( N  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( N  x.  ( |_ `  A ) )  e.  QQ )
82, 6, 7syl2anc 411 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  QQ )
9 qre 9643 . . . 4  |-  ( ( N  x.  ( |_
`  A ) )  e.  QQ  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
108, 9syl 14 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
11 simp2 1000 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  QQ )
12 qmulcl 9655 . . . . . 6  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
132, 11, 12syl2anc 411 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  A )  e.  QQ )
1413flqcld 10295 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  ZZ )
1514zred 9393 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  RR )
16 nnmulcl 8958 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  NN )
17 nnq 9651 . . . . . . 7  |-  ( ( N  x.  M )  e.  NN  ->  ( N  x.  M )  e.  QQ )
1816, 17syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  QQ )
19183adant2 1018 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  QQ )
20 qre 9643 . . . . 5  |-  ( ( N  x.  M )  e.  QQ  ->  ( N  x.  M )  e.  RR )
2119, 20syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  RR )
22 simp1 999 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  NN )
2322nncnd 8951 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  CC )
24 simp3 1001 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  NN )
2524nncnd 8951 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  CC )
2622nnap0d 8983 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N #  0 )
2724nnap0d 8983 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M #  0 )
2823, 25, 26, 27mulap0d 8633 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M ) #  0 )
29 0z 9282 . . . . . . . . . 10  |-  0  e.  ZZ
30 zq 9644 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3129, 30ax-mp 5 . . . . . . . . 9  |-  0  e.  QQ
32 qapne 9657 . . . . . . . . 9  |-  ( ( ( N  x.  M
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( N  x.  M ) #  0  <->  ( N  x.  M )  =/=  0
) )
3319, 31, 32sylancl 413 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
) #  0  <->  ( N  x.  M )  =/=  0
) )
3428, 33mpbid 147 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  =/=  0 )
35 qdivcl 9661 . . . . . . 7  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  ( N  x.  M )  =/=  0 )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
368, 19, 34, 35syl3anc 1249 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
3736flqcld 10295 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  ZZ )
3837zred 9393 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  RR )
3921, 38remulcld 8006 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) )  e.  RR )
40 nnnn0 9201 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
41 flqmulnn0 10317 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4240, 41sylan 283 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4322, 11, 42syl2anc 411 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  <_ 
( |_ `  ( N  x.  A )
) )
4410, 15, 39, 43lesub1dd 8536 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )  <_  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
4522nnred 8950 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  RR )
4624nnred 8950 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  RR )
4722nngt0d 8981 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  N )
4824nngt0d 8981 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  M )
4945, 46, 47, 48mulgt0d 8098 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  ( N  x.  M
) )
50 modqval 10342 . . 3  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  0  < 
( N  x.  M
) )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
518, 19, 49, 50syl3anc 1249 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
52 zq 9644 . . . . 5  |-  ( ( |_ `  ( N  x.  A ) )  e.  ZZ  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
5314, 52syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
54 modqval 10342 . . . 4  |-  ( ( ( |_ `  ( N  x.  A )
)  e.  QQ  /\  ( N  x.  M
)  e.  QQ  /\  0  <  ( N  x.  M ) )  -> 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
)  =  ( ( |_ `  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( |_ `  ( N  x.  A )
)  /  ( N  x.  M ) ) ) ) ) )
5553, 19, 49, 54syl3anc 1249 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) ) ) )
56163adant2 1018 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  NN )
57 flqdiv 10339 . . . . . . 7  |-  ( ( ( N  x.  A
)  e.  QQ  /\  ( N  x.  M
)  e.  NN )  ->  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) )  =  ( |_ `  ( ( N  x.  A )  /  ( N  x.  M ) ) ) )
5813, 56, 57syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  A
)  /  ( N  x.  M ) ) ) )
59 flqdiv 10339 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  M ) )  =  ( |_
`  ( A  /  M ) ) )
60593adant1 1017 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  A )  /  M ) )  =  ( |_ `  ( A  /  M ) ) )
613zcnd 9394 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  CC )
6211, 61syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  CC )
6362, 25, 23, 27, 26divcanap5d 8792 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  =  ( ( |_ `  A )  /  M
) )
6463fveq2d 5534 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( |_ `  A
)  /  M ) ) )
65 qcn 9652 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
6611, 65syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  CC )
6766, 25, 23, 27, 26divcanap5d 8792 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  A
)  /  ( N  x.  M ) )  =  ( A  /  M ) )
6867fveq2d 5534 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  ( A  /  M ) ) )
6960, 64, 683eqtr4rd 2233 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7058, 69eqtrd 2222 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7170oveq2d 5907 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) )  =  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )
7271oveq2d 5907 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) ) ) )  =  ( ( |_
`  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7355, 72eqtrd 2222 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7444, 51, 733brtr4d 4050 1  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160    =/= wne 2360   class class class wbr 4018   ` cfv 5231  (class class class)co 5891   CCcc 7827   RRcr 7828   0cc0 7829    x. cmul 7834    < clt 8010    <_ cle 8011    - cmin 8146   # cap 8556    / cdiv 8647   NNcn 8937   NN0cn0 9194   ZZcz 9271   QQcq 9637   |_cfl 10286    mod cmo 10340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-n0 9195  df-z 9272  df-q 9638  df-rp 9672  df-fl 10288  df-mod 10341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator