| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > modqmulnn | Unicode version | ||
| Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| modqmulnn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnq 9707 | 
. . . . . 6
 | |
| 2 | 1 | 3ad2ant1 1020 | 
. . . . 5
 | 
| 3 | flqcl 10363 | 
. . . . . . 7
 | |
| 4 | zq 9700 | 
. . . . . . 7
 | |
| 5 | 3, 4 | syl 14 | 
. . . . . 6
 | 
| 6 | 5 | 3ad2ant2 1021 | 
. . . . 5
 | 
| 7 | qmulcl 9711 | 
. . . . 5
 | |
| 8 | 2, 6, 7 | syl2anc 411 | 
. . . 4
 | 
| 9 | qre 9699 | 
. . . 4
 | |
| 10 | 8, 9 | syl 14 | 
. . 3
 | 
| 11 | simp2 1000 | 
. . . . . 6
 | |
| 12 | qmulcl 9711 | 
. . . . . 6
 | |
| 13 | 2, 11, 12 | syl2anc 411 | 
. . . . 5
 | 
| 14 | 13 | flqcld 10367 | 
. . . 4
 | 
| 15 | 14 | zred 9448 | 
. . 3
 | 
| 16 | nnmulcl 9011 | 
. . . . . . 7
 | |
| 17 | nnq 9707 | 
. . . . . . 7
 | |
| 18 | 16, 17 | syl 14 | 
. . . . . 6
 | 
| 19 | 18 | 3adant2 1018 | 
. . . . 5
 | 
| 20 | qre 9699 | 
. . . . 5
 | |
| 21 | 19, 20 | syl 14 | 
. . . 4
 | 
| 22 | simp1 999 | 
. . . . . . . . . 10
 | |
| 23 | 22 | nncnd 9004 | 
. . . . . . . . 9
 | 
| 24 | simp3 1001 | 
. . . . . . . . . 10
 | |
| 25 | 24 | nncnd 9004 | 
. . . . . . . . 9
 | 
| 26 | 22 | nnap0d 9036 | 
. . . . . . . . 9
 | 
| 27 | 24 | nnap0d 9036 | 
. . . . . . . . 9
 | 
| 28 | 23, 25, 26, 27 | mulap0d 8685 | 
. . . . . . . 8
 | 
| 29 | 0z 9337 | 
. . . . . . . . . 10
 | |
| 30 | zq 9700 | 
. . . . . . . . . 10
 | |
| 31 | 29, 30 | ax-mp 5 | 
. . . . . . . . 9
 | 
| 32 | qapne 9713 | 
. . . . . . . . 9
 | |
| 33 | 19, 31, 32 | sylancl 413 | 
. . . . . . . 8
 | 
| 34 | 28, 33 | mpbid 147 | 
. . . . . . 7
 | 
| 35 | qdivcl 9717 | 
. . . . . . 7
 | |
| 36 | 8, 19, 34, 35 | syl3anc 1249 | 
. . . . . 6
 | 
| 37 | 36 | flqcld 10367 | 
. . . . 5
 | 
| 38 | 37 | zred 9448 | 
. . . 4
 | 
| 39 | 21, 38 | remulcld 8057 | 
. . 3
 | 
| 40 | nnnn0 9256 | 
. . . . 5
 | |
| 41 | flqmulnn0 10389 | 
. . . . 5
 | |
| 42 | 40, 41 | sylan 283 | 
. . . 4
 | 
| 43 | 22, 11, 42 | syl2anc 411 | 
. . 3
 | 
| 44 | 10, 15, 39, 43 | lesub1dd 8588 | 
. 2
 | 
| 45 | 22 | nnred 9003 | 
. . . 4
 | 
| 46 | 24 | nnred 9003 | 
. . . 4
 | 
| 47 | 22 | nngt0d 9034 | 
. . . 4
 | 
| 48 | 24 | nngt0d 9034 | 
. . . 4
 | 
| 49 | 45, 46, 47, 48 | mulgt0d 8149 | 
. . 3
 | 
| 50 | modqval 10416 | 
. . 3
 | |
| 51 | 8, 19, 49, 50 | syl3anc 1249 | 
. 2
 | 
| 52 | zq 9700 | 
. . . . 5
 | |
| 53 | 14, 52 | syl 14 | 
. . . 4
 | 
| 54 | modqval 10416 | 
. . . 4
 | |
| 55 | 53, 19, 49, 54 | syl3anc 1249 | 
. . 3
 | 
| 56 | 16 | 3adant2 1018 | 
. . . . . . 7
 | 
| 57 | flqdiv 10413 | 
. . . . . . 7
 | |
| 58 | 13, 56, 57 | syl2anc 411 | 
. . . . . 6
 | 
| 59 | flqdiv 10413 | 
. . . . . . . 8
 | |
| 60 | 59 | 3adant1 1017 | 
. . . . . . 7
 | 
| 61 | 3 | zcnd 9449 | 
. . . . . . . . . 10
 | 
| 62 | 11, 61 | syl 14 | 
. . . . . . . . 9
 | 
| 63 | 62, 25, 23, 27, 26 | divcanap5d 8844 | 
. . . . . . . 8
 | 
| 64 | 63 | fveq2d 5562 | 
. . . . . . 7
 | 
| 65 | qcn 9708 | 
. . . . . . . . . 10
 | |
| 66 | 11, 65 | syl 14 | 
. . . . . . . . 9
 | 
| 67 | 66, 25, 23, 27, 26 | divcanap5d 8844 | 
. . . . . . . 8
 | 
| 68 | 67 | fveq2d 5562 | 
. . . . . . 7
 | 
| 69 | 60, 64, 68 | 3eqtr4rd 2240 | 
. . . . . 6
 | 
| 70 | 58, 69 | eqtrd 2229 | 
. . . . 5
 | 
| 71 | 70 | oveq2d 5938 | 
. . . 4
 | 
| 72 | 71 | oveq2d 5938 | 
. . 3
 | 
| 73 | 55, 72 | eqtrd 2229 | 
. 2
 | 
| 74 | 44, 51, 73 | 3brtr4d 4065 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-q 9694 df-rp 9729 df-fl 10360 df-mod 10415 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |