| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqmulnn | Unicode version | ||
| Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqmulnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnq 9754 |
. . . . . 6
| |
| 2 | 1 | 3ad2ant1 1021 |
. . . . 5
|
| 3 | flqcl 10416 |
. . . . . . 7
| |
| 4 | zq 9747 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 5 | 3ad2ant2 1022 |
. . . . 5
|
| 7 | qmulcl 9758 |
. . . . 5
| |
| 8 | 2, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | qre 9746 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | simp2 1001 |
. . . . . 6
| |
| 12 | qmulcl 9758 |
. . . . . 6
| |
| 13 | 2, 11, 12 | syl2anc 411 |
. . . . 5
|
| 14 | 13 | flqcld 10420 |
. . . 4
|
| 15 | 14 | zred 9495 |
. . 3
|
| 16 | nnmulcl 9057 |
. . . . . . 7
| |
| 17 | nnq 9754 |
. . . . . . 7
| |
| 18 | 16, 17 | syl 14 |
. . . . . 6
|
| 19 | 18 | 3adant2 1019 |
. . . . 5
|
| 20 | qre 9746 |
. . . . 5
| |
| 21 | 19, 20 | syl 14 |
. . . 4
|
| 22 | simp1 1000 |
. . . . . . . . . 10
| |
| 23 | 22 | nncnd 9050 |
. . . . . . . . 9
|
| 24 | simp3 1002 |
. . . . . . . . . 10
| |
| 25 | 24 | nncnd 9050 |
. . . . . . . . 9
|
| 26 | 22 | nnap0d 9082 |
. . . . . . . . 9
|
| 27 | 24 | nnap0d 9082 |
. . . . . . . . 9
|
| 28 | 23, 25, 26, 27 | mulap0d 8731 |
. . . . . . . 8
|
| 29 | 0z 9383 |
. . . . . . . . . 10
| |
| 30 | zq 9747 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
|
| 32 | qapne 9760 |
. . . . . . . . 9
| |
| 33 | 19, 31, 32 | sylancl 413 |
. . . . . . . 8
|
| 34 | 28, 33 | mpbid 147 |
. . . . . . 7
|
| 35 | qdivcl 9764 |
. . . . . . 7
| |
| 36 | 8, 19, 34, 35 | syl3anc 1250 |
. . . . . 6
|
| 37 | 36 | flqcld 10420 |
. . . . 5
|
| 38 | 37 | zred 9495 |
. . . 4
|
| 39 | 21, 38 | remulcld 8103 |
. . 3
|
| 40 | nnnn0 9302 |
. . . . 5
| |
| 41 | flqmulnn0 10442 |
. . . . 5
| |
| 42 | 40, 41 | sylan 283 |
. . . 4
|
| 43 | 22, 11, 42 | syl2anc 411 |
. . 3
|
| 44 | 10, 15, 39, 43 | lesub1dd 8634 |
. 2
|
| 45 | 22 | nnred 9049 |
. . . 4
|
| 46 | 24 | nnred 9049 |
. . . 4
|
| 47 | 22 | nngt0d 9080 |
. . . 4
|
| 48 | 24 | nngt0d 9080 |
. . . 4
|
| 49 | 45, 46, 47, 48 | mulgt0d 8195 |
. . 3
|
| 50 | modqval 10469 |
. . 3
| |
| 51 | 8, 19, 49, 50 | syl3anc 1250 |
. 2
|
| 52 | zq 9747 |
. . . . 5
| |
| 53 | 14, 52 | syl 14 |
. . . 4
|
| 54 | modqval 10469 |
. . . 4
| |
| 55 | 53, 19, 49, 54 | syl3anc 1250 |
. . 3
|
| 56 | 16 | 3adant2 1019 |
. . . . . . 7
|
| 57 | flqdiv 10466 |
. . . . . . 7
| |
| 58 | 13, 56, 57 | syl2anc 411 |
. . . . . 6
|
| 59 | flqdiv 10466 |
. . . . . . . 8
| |
| 60 | 59 | 3adant1 1018 |
. . . . . . 7
|
| 61 | 3 | zcnd 9496 |
. . . . . . . . . 10
|
| 62 | 11, 61 | syl 14 |
. . . . . . . . 9
|
| 63 | 62, 25, 23, 27, 26 | divcanap5d 8890 |
. . . . . . . 8
|
| 64 | 63 | fveq2d 5580 |
. . . . . . 7
|
| 65 | qcn 9755 |
. . . . . . . . . 10
| |
| 66 | 11, 65 | syl 14 |
. . . . . . . . 9
|
| 67 | 66, 25, 23, 27, 26 | divcanap5d 8890 |
. . . . . . . 8
|
| 68 | 67 | fveq2d 5580 |
. . . . . . 7
|
| 69 | 60, 64, 68 | 3eqtr4rd 2249 |
. . . . . 6
|
| 70 | 58, 69 | eqtrd 2238 |
. . . . 5
|
| 71 | 70 | oveq2d 5960 |
. . . 4
|
| 72 | 71 | oveq2d 5960 |
. . 3
|
| 73 | 55, 72 | eqtrd 2238 |
. 2
|
| 74 | 44, 51, 73 | 3brtr4d 4076 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 df-mod 10468 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |