ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulnn Unicode version

Theorem modqmulnn 10298
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqmulnn  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )

Proof of Theorem modqmulnn
StepHypRef Expression
1 nnq 9592 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
213ad2ant1 1013 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  QQ )
3 flqcl 10229 . . . . . . 7  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
4 zq 9585 . . . . . . 7  |-  ( ( |_ `  A )  e.  ZZ  ->  ( |_ `  A )  e.  QQ )
53, 4syl 14 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  QQ )
653ad2ant2 1014 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  QQ )
7 qmulcl 9596 . . . . 5  |-  ( ( N  e.  QQ  /\  ( |_ `  A )  e.  QQ )  -> 
( N  x.  ( |_ `  A ) )  e.  QQ )
82, 6, 7syl2anc 409 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  QQ )
9 qre 9584 . . . 4  |-  ( ( N  x.  ( |_
`  A ) )  e.  QQ  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
108, 9syl 14 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  e.  RR )
11 simp2 993 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  QQ )
12 qmulcl 9596 . . . . . 6  |-  ( ( N  e.  QQ  /\  A  e.  QQ )  ->  ( N  x.  A
)  e.  QQ )
132, 11, 12syl2anc 409 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  A )  e.  QQ )
1413flqcld 10233 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  ZZ )
1514zred 9334 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  RR )
16 nnmulcl 8899 . . . . . . 7  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  NN )
17 nnq 9592 . . . . . . 7  |-  ( ( N  x.  M )  e.  NN  ->  ( N  x.  M )  e.  QQ )
1816, 17syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  x.  M
)  e.  QQ )
19183adant2 1011 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  QQ )
20 qre 9584 . . . . 5  |-  ( ( N  x.  M )  e.  QQ  ->  ( N  x.  M )  e.  RR )
2119, 20syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  RR )
22 simp1 992 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  NN )
2322nncnd 8892 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  CC )
24 simp3 994 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  NN )
2524nncnd 8892 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  CC )
2622nnap0d 8924 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N #  0 )
2724nnap0d 8924 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M #  0 )
2823, 25, 26, 27mulap0d 8576 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M ) #  0 )
29 0z 9223 . . . . . . . . . 10  |-  0  e.  ZZ
30 zq 9585 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3129, 30ax-mp 5 . . . . . . . . 9  |-  0  e.  QQ
32 qapne 9598 . . . . . . . . 9  |-  ( ( ( N  x.  M
)  e.  QQ  /\  0  e.  QQ )  ->  ( ( N  x.  M ) #  0  <->  ( N  x.  M )  =/=  0
) )
3319, 31, 32sylancl 411 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
) #  0  <->  ( N  x.  M )  =/=  0
) )
3428, 33mpbid 146 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  =/=  0 )
35 qdivcl 9602 . . . . . . 7  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  ( N  x.  M )  =/=  0 )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
368, 19, 34, 35syl3anc 1233 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  e.  QQ )
3736flqcld 10233 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  ZZ )
3837zred 9334 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  e.  RR )
3921, 38remulcld 7950 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) )  e.  RR )
40 nnnn0 9142 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
41 flqmulnn0 10255 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4240, 41sylan 281 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ )  ->  ( N  x.  ( |_ `  A ) )  <_  ( |_ `  ( N  x.  A
) ) )
4322, 11, 42syl2anc 409 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  ( |_ `  A ) )  <_ 
( |_ `  ( N  x.  A )
) )
4410, 15, 39, 43lesub1dd 8480 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )  <_  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
4522nnred 8891 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  N  e.  RR )
4624nnred 8891 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  M  e.  RR )
4722nngt0d 8922 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  N )
4824nngt0d 8922 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  M )
4945, 46, 47, 48mulgt0d 8042 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  0  <  ( N  x.  M
) )
50 modqval 10280 . . 3  |-  ( ( ( N  x.  ( |_ `  A ) )  e.  QQ  /\  ( N  x.  M )  e.  QQ  /\  0  < 
( N  x.  M
) )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
518, 19, 49, 50syl3anc 1233 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  =  ( ( N  x.  ( |_ `  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) ) )
52 zq 9585 . . . . 5  |-  ( ( |_ `  ( N  x.  A ) )  e.  ZZ  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
5314, 52syl 14 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( N  x.  A ) )  e.  QQ )
54 modqval 10280 . . . 4  |-  ( ( ( |_ `  ( N  x.  A )
)  e.  QQ  /\  ( N  x.  M
)  e.  QQ  /\  0  <  ( N  x.  M ) )  -> 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
)  =  ( ( |_ `  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  (
( |_ `  ( N  x.  A )
)  /  ( N  x.  M ) ) ) ) ) )
5553, 19, 49, 54syl3anc 1233 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) ) ) )
56163adant2 1011 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( N  x.  M )  e.  NN )
57 flqdiv 10277 . . . . . . 7  |-  ( ( ( N  x.  A
)  e.  QQ  /\  ( N  x.  M
)  e.  NN )  ->  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) )  =  ( |_ `  ( ( N  x.  A )  /  ( N  x.  M ) ) ) )
5813, 56, 57syl2anc 409 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  A
)  /  ( N  x.  M ) ) ) )
59 flqdiv 10277 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  (
( |_ `  A
)  /  M ) )  =  ( |_
`  ( A  /  M ) ) )
60593adant1 1010 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  A )  /  M ) )  =  ( |_ `  ( A  /  M ) ) )
613zcnd 9335 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  CC )
6211, 61syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  A )  e.  CC )
6362, 25, 23, 27, 26divcanap5d 8734 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) )  =  ( ( |_ `  A )  /  M
) )
6463fveq2d 5500 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( |_ `  A
)  /  M ) ) )
65 qcn 9593 . . . . . . . . . 10  |-  ( A  e.  QQ  ->  A  e.  CC )
6611, 65syl 14 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  A  e.  CC )
6766, 25, 23, 27, 26divcanap5d 8734 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  A
)  /  ( N  x.  M ) )  =  ( A  /  M ) )
6867fveq2d 5500 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  ( A  /  M ) ) )
6960, 64, 683eqtr4rd 2214 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( N  x.  A )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7058, 69eqtrd 2203 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  ( |_ `  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) )  =  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) )
7170oveq2d 5869 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  M
)  x.  ( |_
`  ( ( |_
`  ( N  x.  A ) )  / 
( N  x.  M
) ) ) )  =  ( ( N  x.  M )  x.  ( |_ `  (
( N  x.  ( |_ `  A ) )  /  ( N  x.  M ) ) ) ) )
7271oveq2d 5869 . . 3  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  -  ( ( N  x.  M )  x.  ( |_ `  ( ( |_ `  ( N  x.  A
) )  /  ( N  x.  M )
) ) ) )  =  ( ( |_
`  ( N  x.  A ) )  -  ( ( N  x.  M )  x.  ( |_ `  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7355, 72eqtrd 2203 . 2  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( |_ `  ( N  x.  A )
)  mod  ( N  x.  M ) )  =  ( ( |_ `  ( N  x.  A
) )  -  (
( N  x.  M
)  x.  ( |_
`  ( ( N  x.  ( |_ `  A ) )  / 
( N  x.  M
) ) ) ) ) )
7444, 51, 733brtr4d 4021 1  |-  ( ( N  e.  NN  /\  A  e.  QQ  /\  M  e.  NN )  ->  (
( N  x.  ( |_ `  A ) )  mod  ( N  x.  M ) )  <_ 
( ( |_ `  ( N  x.  A
) )  mod  ( N  x.  M )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   # cap 8500    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   QQcq 9578   |_cfl 10224    mod cmo 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226  df-mod 10279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator