| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodgt0gt0 | Unicode version | ||
| Description: Infer that a multiplicand
is positive from a positive multiplier and
positive product. See prodgt0 8896 for the same theorem with |
| Ref | Expression |
|---|---|
| prodgt0gt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . 4
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | 1, 2 | remulcld 8074 |
. . 3
|
| 4 | simprl 529 |
. . . . 5
| |
| 5 | 1, 4 | gt0ap0d 8673 |
. . . 4
|
| 6 | 1, 5 | rerecclapd 8878 |
. . 3
|
| 7 | simprr 531 |
. . 3
| |
| 8 | recgt0 8894 |
. . . 4
| |
| 9 | 8 | ad2ant2r 509 |
. . 3
|
| 10 | 3, 6, 7, 9 | mulgt0d 8166 |
. 2
|
| 11 | 3 | recnd 8072 |
. . . 4
|
| 12 | 1 | recnd 8072 |
. . . 4
|
| 13 | 11, 12, 5 | divrecapd 8837 |
. . 3
|
| 14 | simpr 110 |
. . . . . 6
| |
| 15 | 14 | recnd 8072 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | 16, 12, 5 | divcanap3d 8839 |
. . 3
|
| 18 | 13, 17 | eqtr3d 2231 |
. 2
|
| 19 | 10, 18 | breqtrd 4060 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 |
| This theorem is referenced by: prodgt0 8896 |
| Copyright terms: Public domain | W3C validator |