Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodgt0gt0 | Unicode version |
Description: Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 8782 for the same theorem with replaced by the weaker condition . (Contributed by Jim Kingdon, 29-Feb-2020.) |
Ref | Expression |
---|---|
prodgt0gt0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . 4 | |
2 | simplr 528 | . . . 4 | |
3 | 1, 2 | remulcld 7962 | . . 3 |
4 | simprl 529 | . . . . 5 | |
5 | 1, 4 | gt0ap0d 8560 | . . . 4 # |
6 | 1, 5 | rerecclapd 8764 | . . 3 |
7 | simprr 531 | . . 3 | |
8 | recgt0 8780 | . . . 4 | |
9 | 8 | ad2ant2r 509 | . . 3 |
10 | 3, 6, 7, 9 | mulgt0d 8054 | . 2 |
11 | 3 | recnd 7960 | . . . 4 |
12 | 1 | recnd 7960 | . . . 4 |
13 | 11, 12, 5 | divrecapd 8723 | . . 3 |
14 | simpr 110 | . . . . . 6 | |
15 | 14 | recnd 7960 | . . . . 5 |
16 | 15 | adantr 276 | . . . 4 |
17 | 16, 12, 5 | divcanap3d 8725 | . . 3 |
18 | 13, 17 | eqtr3d 2210 | . 2 |
19 | 10, 18 | breqtrd 4024 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 class class class wbr 3998 (class class class)co 5865 cc 7784 cr 7785 cc0 7786 c1 7787 cmul 7791 clt 7966 cdiv 8602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 |
This theorem is referenced by: prodgt0 8782 |
Copyright terms: Public domain | W3C validator |