ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt0gt0 Unicode version

Theorem prodgt0gt0 8781
Description: Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 8782 for the same theorem with  0  < 
A replaced by the weaker condition 
0  <_  A. (Contributed by Jim Kingdon, 29-Feb-2020.)
Assertion
Ref Expression
prodgt0gt0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  B )

Proof of Theorem prodgt0gt0
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A  e.  RR )
2 simplr 528 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  B  e.  RR )
31, 2remulcld 7962 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  ( A  x.  B )  e.  RR )
4 simprl 529 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  A )
51, 4gt0ap0d 8560 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A #  0 )
61, 5rerecclapd 8764 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
1  /  A )  e.  RR )
7 simprr 531 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( A  x.  B
) )
8 recgt0 8780 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
98ad2ant2r 509 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( 1  /  A
) )
103, 6, 7, 9mulgt0d 8054 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( ( A  x.  B )  x.  (
1  /  A ) ) )
113recnd 7960 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  ( A  x.  B )  e.  CC )
121recnd 7960 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A  e.  CC )
1311, 12, 5divrecapd 8723 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  /  A )  =  ( ( A  x.  B )  x.  ( 1  /  A
) ) )
14 simpr 110 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
1514recnd 7960 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
1615adantr 276 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  B  e.  CC )
1716, 12, 5divcanap3d 8725 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  /  A )  =  B )
1813, 17eqtr3d 2210 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  x.  ( 1  /  A ) )  =  B )
1910, 18breqtrd 4024 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   CCcc 7784   RRcr 7785   0cc0 7786   1c1 7787    x. cmul 7791    < clt 7966    / cdiv 8602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603
This theorem is referenced by:  prodgt0  8782
  Copyright terms: Public domain W3C validator