ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt0gt0 Unicode version

Theorem prodgt0gt0 8609
Description: Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 8610 for the same theorem with  0  < 
A replaced by the weaker condition 
0  <_  A. (Contributed by Jim Kingdon, 29-Feb-2020.)
Assertion
Ref Expression
prodgt0gt0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  B )

Proof of Theorem prodgt0gt0
StepHypRef Expression
1 simpll 518 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A  e.  RR )
2 simplr 519 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  B  e.  RR )
31, 2remulcld 7796 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  ( A  x.  B )  e.  RR )
4 simprl 520 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  A )
51, 4gt0ap0d 8391 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A #  0 )
61, 5rerecclapd 8593 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
1  /  A )  e.  RR )
7 simprr 521 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( A  x.  B
) )
8 recgt0 8608 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
98ad2ant2r 500 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( 1  /  A
) )
103, 6, 7, 9mulgt0d 7885 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  ( ( A  x.  B )  x.  (
1  /  A ) ) )
113recnd 7794 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  ( A  x.  B )  e.  CC )
121recnd 7794 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  A  e.  CC )
1311, 12, 5divrecapd 8553 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  /  A )  =  ( ( A  x.  B )  x.  ( 1  /  A
) ) )
14 simpr 109 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
1514recnd 7794 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
1615adantr 274 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  B  e.  CC )
1716, 12, 5divcanap3d 8555 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  /  A )  =  B )
1813, 17eqtr3d 2174 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  (
( A  x.  B
)  x.  ( 1  /  A ) )  =  B )
1910, 18breqtrd 3954 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  ( A  x.  B ) ) )  ->  0  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    x. cmul 7625    < clt 7800    / cdiv 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433
This theorem is referenced by:  prodgt0  8610
  Copyright terms: Public domain W3C validator