ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsub2 Unicode version

Theorem mulsub2 8300
Description: Swap the order of subtraction in a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
mulsub2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( B  -  A )  x.  ( D  -  C ) ) )

Proof of Theorem mulsub2
StepHypRef Expression
1 subcl 8097 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 subcl 8097 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
3 mul2neg 8296 . . 3  |-  ( ( ( A  -  B
)  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( -u ( A  -  B )  x.  -u ( C  -  D ) )  =  ( ( A  -  B )  x.  ( C  -  D )
) )
41, 2, 3syl2an 287 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( -u ( A  -  B )  x.  -u ( C  -  D )
)  =  ( ( A  -  B )  x.  ( C  -  D ) ) )
5 negsubdi2 8157 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
6 negsubdi2 8157 . . 3  |-  ( ( C  e.  CC  /\  D  e.  CC )  -> 
-u ( C  -  D )  =  ( D  -  C ) )
75, 6oveqan12d 5861 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( -u ( A  -  B )  x.  -u ( C  -  D )
)  =  ( ( B  -  A )  x.  ( D  -  C ) ) )
84, 7eqtr3d 2200 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  -  B )  x.  ( C  -  D )
)  =  ( ( B  -  A )  x.  ( D  -  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    x. cmul 7758    - cmin 8069   -ucneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator