ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubdi2 Unicode version

Theorem negsubdi2 8247
Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
Assertion
Ref Expression
negsubdi2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )

Proof of Theorem negsubdi2
StepHypRef Expression
1 negsubdi 8244 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  (
-u A  +  B
) )
2 negcl 8188 . . 3  |-  ( A  e.  CC  ->  -u A  e.  CC )
3 addcom 8125 . . 3  |-  ( (
-u A  e.  CC  /\  B  e.  CC )  ->  ( -u A  +  B )  =  ( B  +  -u A
) )
42, 3sylan 283 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  +  B )  =  ( B  +  -u A
) )
5 negsub 8236 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  +  -u A )  =  ( B  -  A ) )
65ancoms 268 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  -u A )  =  ( B  -  A ) )
71, 4, 63eqtrd 2226 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160  (class class class)co 5897   CCcc 7840    + caddc 7845    - cmin 8159   -ucneg 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-setind 4554  ax-resscn 7934  ax-1cn 7935  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-sub 8161  df-neg 8162
This theorem is referenced by:  neg2sub  8248  negsubdi2d  8315  subeqrev  8364  mulsub2  8390  div2subap  8825  elz2  9355  fzshftral  10140  sqsubswap  10614  abssub  11145  abs2difabs  11152  dvdsprmpweqle  12372  sin2pim  14711  cos2pim  14712  ptolemy  14722
  Copyright terms: Public domain W3C validator