ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mvrraddi Unicode version

Theorem mvrraddi 8136
Description: Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
mvrraddi.1  |-  B  e.  CC
mvrraddi.2  |-  C  e.  CC
mvrraddi.3  |-  A  =  ( B  +  C
)
Assertion
Ref Expression
mvrraddi  |-  ( A  -  C )  =  B

Proof of Theorem mvrraddi
StepHypRef Expression
1 mvrraddi.3 . . 3  |-  A  =  ( B  +  C
)
21oveq1i 5863 . 2  |-  ( A  -  C )  =  ( ( B  +  C )  -  C
)
3 mvrraddi.1 . . 3  |-  B  e.  CC
4 mvrraddi.2 . . 3  |-  C  e.  CC
53, 4pncan3oi 8135 . 2  |-  ( ( B  +  C )  -  C )  =  B
62, 5eqtri 2191 1  |-  ( A  -  C )  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772    + caddc 7777    - cmin 8090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092
This theorem is referenced by:  4m1e3  8999  5m1e4  9000  6m1e5  9001  7m1e6  9002  8m1e7  9003  9m1e8  9004  10m1e9  9438  fldiv4p1lem1div2  10261  pockthi  12310  lgsdir2lem2  13724
  Copyright terms: Public domain W3C validator