| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mvrraddi | GIF version | ||
| Description: Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| mvrraddi.1 | ⊢ 𝐵 ∈ ℂ |
| mvrraddi.2 | ⊢ 𝐶 ∈ ℂ |
| mvrraddi.3 | ⊢ 𝐴 = (𝐵 + 𝐶) |
| Ref | Expression |
|---|---|
| mvrraddi | ⊢ (𝐴 − 𝐶) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrraddi.3 | . . 3 ⊢ 𝐴 = (𝐵 + 𝐶) | |
| 2 | 1 | oveq1i 5977 | . 2 ⊢ (𝐴 − 𝐶) = ((𝐵 + 𝐶) − 𝐶) |
| 3 | mvrraddi.1 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | mvrraddi.2 | . . 3 ⊢ 𝐶 ∈ ℂ | |
| 5 | 3, 4 | pncan3oi 8323 | . 2 ⊢ ((𝐵 + 𝐶) − 𝐶) = 𝐵 |
| 6 | 2, 5 | eqtri 2228 | 1 ⊢ (𝐴 − 𝐶) = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 (class class class)co 5967 ℂcc 7958 + caddc 7963 − cmin 8278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 |
| This theorem is referenced by: 4m1e3 9192 5m1e4 9193 6m1e5 9194 7m1e6 9195 8m1e7 9196 9m1e8 9197 10m1e9 9634 fldiv4p1lem1div2 10485 pockthi 12796 lgsdir2lem2 15621 2lgsoddprmlem3c 15701 2lgsoddprmlem3d 15702 |
| Copyright terms: Public domain | W3C validator |