![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nltled | GIF version |
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Ref | Expression |
---|---|
nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | lenltd 8139 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 < clt 8056 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-xr 8060 df-le 8062 |
This theorem is referenced by: ltntri 8149 suprubex 8972 infregelbex 9666 seqf1oglem1 10593 cvgratz 11678 zsupcl 12087 zssinfcl 12088 infssuzledc 12090 dvdslegcd 12104 pw2dvdseulemle 12308 gsumfzval 12977 gsumfzcl 13074 gsumfzreidx 13410 gsumfzsubmcl 13411 gsumfzmptfidmadd 13412 gsumfzmhm 13416 gsumfzfsum 14087 dedekindeulemuub 14796 dedekindeulemlu 14800 suplociccex 14804 dedekindicclemuub 14805 dedekindicclemlu 14809 ivthinclemlopn 14815 ivthinclemuopn 14817 refeq 15588 |
Copyright terms: Public domain | W3C validator |