| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltled | GIF version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 8163 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-xr 8084 df-le 8086 |
| This theorem is referenced by: ltntri 8173 suprubex 8997 infregelbex 9691 zsupcl 10340 zssinfcl 10341 infssuzledc 10343 seqf1oglem1 10630 cvgratz 11716 bitsfzolem 12138 bitsmod 12140 dvdslegcd 12158 pw2dvdseulemle 12362 gsumfzval 13095 gsumfzcl 13203 gsumfzreidx 13545 gsumfzsubmcl 13546 gsumfzmptfidmadd 13547 gsumfzmhm 13551 gsumfzfsum 14222 dedekindeulemuub 14961 dedekindeulemlu 14965 suplociccex 14969 dedekindicclemuub 14970 dedekindicclemlu 14974 ivthinclemlopn 14980 ivthinclemuopn 14982 refeq 15785 |
| Copyright terms: Public domain | W3C validator |