| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltled | GIF version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nltled.1 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| nltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | lenltd 8197 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2177 class class class wbr 4047 ℝcr 7931 < clt 8114 ≤ cle 8115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-cnv 4687 df-xr 8118 df-le 8120 |
| This theorem is referenced by: ltntri 8207 suprubex 9031 infregelbex 9726 zsupcl 10381 zssinfcl 10382 infssuzledc 10384 seqf1oglem1 10671 cvgratz 11887 bitsfzolem 12309 bitsmod 12311 dvdslegcd 12329 pw2dvdseulemle 12533 gsumfzval 13267 gsumfzcl 13375 gsumfzreidx 13717 gsumfzsubmcl 13718 gsumfzmptfidmadd 13719 gsumfzmhm 13723 gsumfzfsum 14394 dedekindeulemuub 15133 dedekindeulemlu 15137 suplociccex 15141 dedekindicclemuub 15142 dedekindicclemlu 15146 ivthinclemlopn 15152 ivthinclemuopn 15154 refeq 16041 |
| Copyright terms: Public domain | W3C validator |