Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  refeq Unicode version

Theorem refeq 16169
Description: Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
refeq.f  |-  ( ph  ->  F : RR --> RR )
refeq.g  |-  ( ph  ->  G : RR --> RR )
refeq.lt0  |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x
)  =  ( G `
 x ) ) )
refeq.gt0  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =  ( G `
 x ) ) )
refeq.0  |-  ( ph  ->  ( F `  0
)  =  ( G `
 0 ) )
Assertion
Ref Expression
refeq  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, F    x, G    ph, x

Proof of Theorem refeq
StepHypRef Expression
1 refeq.f . . 3  |-  ( ph  ->  F : RR --> RR )
21ffnd 5446 . 2  |-  ( ph  ->  F  Fn  RR )
3 refeq.g . . 3  |-  ( ph  ->  G : RR --> RR )
43ffnd 5446 . 2  |-  ( ph  ->  G  Fn  RR )
5 refeq.0 . . . . . 6  |-  ( ph  ->  ( F `  0
)  =  ( G `
 0 ) )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  0 )  =  ( G `  0
) )
7 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  e.  RR )
8 0red 8108 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  0  e.  RR )
9 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x ) #  ( G `
 x ) )
101ffvelcdmda 5738 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1110recnd 8136 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  CC )
1211adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  e.  CC )
133ffvelcdmda 5738 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( G `
 x )  e.  RR )
1413recnd 8136 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( G `
 x )  e.  CC )
1514adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( G `  x )  e.  CC )
16 apne 8731 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( F `  x ) #  ( G `  x )  ->  ( F `  x )  =/=  ( G `  x
) ) )
1712, 15, 16syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( ( F `  x ) #  ( G `  x )  ->  ( F `  x )  =/=  ( G `  x )
) )
189, 17mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =/=  ( G `  x )
)
1918neneqd 2399 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  ( F `  x )  =  ( G `  x ) )
20 refeq.gt0 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =  ( G `
 x ) ) )
2120r19.21bi 2596 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =  ( G `  x ) ) )
2221adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( 0  <  x  ->  ( F `  x )  =  ( G `  x ) ) )
2319, 22mtod 665 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  0  <  x )
247, 8, 23nltled 8228 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  <_  0 )
25 refeq.lt0 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x
)  =  ( G `
 x ) ) )
2625r19.21bi 2596 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )
2726adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )
2819, 27mtod 665 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  x  <  0 )
298, 7, 28nltled 8228 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  0  <_  x )
307, 8letri3d 8223 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( x  =  0  <->  ( x  <_  0  /\  0  <_  x ) ) )
3124, 29, 30mpbir2and 947 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  = 
0 )
3231fveq2d 5603 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =  ( F `  0 ) )
3331fveq2d 5603 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( G `  x )  =  ( G `  0 ) )
346, 32, 333eqtr4d 2250 . . . 4  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =  ( G `  x ) )
3534, 19pm2.65da 663 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  -.  ( F `  x ) #  ( G `  x ) )
36 apti 8730 . . . 4  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( F `  x )  =  ( G `  x )  <->  -.  ( F `  x
) #  ( G `  x ) ) )
3711, 14, 36syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  =  ( G `  x )  <->  -.  ( F `  x ) #  ( G `  x ) ) )
3835, 37mpbird 167 . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  =  ( G `  x
) )
392, 4, 38eqfnfvd 5703 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   class class class wbr 4059   -->wf 5286   ` cfv 5290   CCcc 7958   RRcr 7959   0cc0 7960    < clt 8142    <_ cle 8143   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator