Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  refeq Unicode version

Theorem refeq 15442
Description: Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
refeq.f  |-  ( ph  ->  F : RR --> RR )
refeq.g  |-  ( ph  ->  G : RR --> RR )
refeq.lt0  |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x
)  =  ( G `
 x ) ) )
refeq.gt0  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =  ( G `
 x ) ) )
refeq.0  |-  ( ph  ->  ( F `  0
)  =  ( G `
 0 ) )
Assertion
Ref Expression
refeq  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, F    x, G    ph, x

Proof of Theorem refeq
StepHypRef Expression
1 refeq.f . . 3  |-  ( ph  ->  F : RR --> RR )
21ffnd 5392 . 2  |-  ( ph  ->  F  Fn  RR )
3 refeq.g . . 3  |-  ( ph  ->  G : RR --> RR )
43ffnd 5392 . 2  |-  ( ph  ->  G  Fn  RR )
5 refeq.0 . . . . . 6  |-  ( ph  ->  ( F `  0
)  =  ( G `
 0 ) )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  0 )  =  ( G `  0
) )
7 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  e.  RR )
8 0red 8006 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  0  e.  RR )
9 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x ) #  ( G `
 x ) )
101ffvelcdmda 5681 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1110recnd 8034 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  CC )
1211adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  e.  CC )
133ffvelcdmda 5681 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( G `
 x )  e.  RR )
1413recnd 8034 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( G `
 x )  e.  CC )
1514adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( G `  x )  e.  CC )
16 apne 8628 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( F `  x ) #  ( G `  x )  ->  ( F `  x )  =/=  ( G `  x
) ) )
1712, 15, 16syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( ( F `  x ) #  ( G `  x )  ->  ( F `  x )  =/=  ( G `  x )
) )
189, 17mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =/=  ( G `  x )
)
1918neneqd 2381 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  ( F `  x )  =  ( G `  x ) )
20 refeq.gt0 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =  ( G `
 x ) ) )
2120r19.21bi 2578 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =  ( G `  x ) ) )
2221adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( 0  <  x  ->  ( F `  x )  =  ( G `  x ) ) )
2319, 22mtod 664 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  0  <  x )
247, 8, 23nltled 8126 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  <_  0 )
25 refeq.lt0 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x
)  =  ( G `
 x ) ) )
2625r19.21bi 2578 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )
2726adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )
2819, 27mtod 664 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  x  <  0 )
298, 7, 28nltled 8126 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  0  <_  x )
307, 8letri3d 8121 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( x  =  0  <->  ( x  <_  0  /\  0  <_  x ) ) )
3124, 29, 30mpbir2and 946 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  = 
0 )
3231fveq2d 5546 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =  ( F `  0 ) )
3331fveq2d 5546 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( G `  x )  =  ( G `  0 ) )
346, 32, 333eqtr4d 2232 . . . 4  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =  ( G `  x ) )
3534, 19pm2.65da 662 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  -.  ( F `  x ) #  ( G `  x ) )
36 apti 8627 . . . 4  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( F `  x )  =  ( G `  x )  <->  -.  ( F `  x
) #  ( G `  x ) ) )
3711, 14, 36syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  =  ( G `  x )  <->  -.  ( F `  x ) #  ( G `  x ) ) )
3835, 37mpbird 167 . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  =  ( G `  x
) )
392, 4, 38eqfnfvd 5646 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   class class class wbr 4025   -->wf 5238   ` cfv 5242   CCcc 7856   RRcr 7857   0cc0 7858    < clt 8040    <_ cle 8041   # cap 8586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-br 4026  df-opab 4087  df-mpt 4088  df-id 4318  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator