Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  refeq Unicode version

Theorem refeq 15672
Description: Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
refeq.f  |-  ( ph  ->  F : RR --> RR )
refeq.g  |-  ( ph  ->  G : RR --> RR )
refeq.lt0  |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x
)  =  ( G `
 x ) ) )
refeq.gt0  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =  ( G `
 x ) ) )
refeq.0  |-  ( ph  ->  ( F `  0
)  =  ( G `
 0 ) )
Assertion
Ref Expression
refeq  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, F    x, G    ph, x

Proof of Theorem refeq
StepHypRef Expression
1 refeq.f . . 3  |-  ( ph  ->  F : RR --> RR )
21ffnd 5408 . 2  |-  ( ph  ->  F  Fn  RR )
3 refeq.g . . 3  |-  ( ph  ->  G : RR --> RR )
43ffnd 5408 . 2  |-  ( ph  ->  G  Fn  RR )
5 refeq.0 . . . . . 6  |-  ( ph  ->  ( F `  0
)  =  ( G `
 0 ) )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  0 )  =  ( G `  0
) )
7 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  e.  RR )
8 0red 8027 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  0  e.  RR )
9 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x ) #  ( G `
 x ) )
101ffvelcdmda 5697 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1110recnd 8055 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  CC )
1211adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  e.  CC )
133ffvelcdmda 5697 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( G `
 x )  e.  RR )
1413recnd 8055 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( G `
 x )  e.  CC )
1514adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( G `  x )  e.  CC )
16 apne 8650 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( F `  x ) #  ( G `  x )  ->  ( F `  x )  =/=  ( G `  x
) ) )
1712, 15, 16syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( ( F `  x ) #  ( G `  x )  ->  ( F `  x )  =/=  ( G `  x )
) )
189, 17mpd 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =/=  ( G `  x )
)
1918neneqd 2388 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  ( F `  x )  =  ( G `  x ) )
20 refeq.gt0 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( 0  <  x  ->  ( F `  x
)  =  ( G `
 x ) ) )
2120r19.21bi 2585 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( 0  <  x  ->  ( F `  x )  =  ( G `  x ) ) )
2221adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( 0  <  x  ->  ( F `  x )  =  ( G `  x ) ) )
2319, 22mtod 664 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  0  <  x )
247, 8, 23nltled 8147 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  <_  0 )
25 refeq.lt0 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  RR  ( x  <  0  ->  ( F `  x
)  =  ( G `
 x ) ) )
2625r19.21bi 2585 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )
2726adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( x  <  0  ->  ( F `  x )  =  ( G `  x ) ) )
2819, 27mtod 664 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  -.  x  <  0 )
298, 7, 28nltled 8147 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  0  <_  x )
307, 8letri3d 8142 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( x  =  0  <->  ( x  <_  0  /\  0  <_  x ) ) )
3124, 29, 30mpbir2and 946 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  x  = 
0 )
3231fveq2d 5562 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =  ( F `  0 ) )
3331fveq2d 5562 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( G `  x )  =  ( G `  0 ) )
346, 32, 333eqtr4d 2239 . . . 4  |-  ( ( ( ph  /\  x  e.  RR )  /\  ( F `  x ) #  ( G `  x ) )  ->  ( F `  x )  =  ( G `  x ) )
3534, 19pm2.65da 662 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  -.  ( F `  x ) #  ( G `  x ) )
36 apti 8649 . . . 4  |-  ( ( ( F `  x
)  e.  CC  /\  ( G `  x )  e.  CC )  -> 
( ( F `  x )  =  ( G `  x )  <->  -.  ( F `  x
) #  ( G `  x ) ) )
3711, 14, 36syl2anc 411 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  =  ( G `  x )  <->  -.  ( F `  x ) #  ( G `  x ) ) )
3835, 37mpbird 167 . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  =  ( G `  x
) )
392, 4, 38eqfnfvd 5662 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   class class class wbr 4033   -->wf 5254   ` cfv 5258   CCcc 7877   RRcr 7878   0cc0 7879    < clt 8061    <_ cle 8062   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator