| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > refeq | Unicode version | ||
| Description: Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.) |
| Ref | Expression |
|---|---|
| refeq.f |
|
| refeq.g |
|
| refeq.lt0 |
|
| refeq.gt0 |
|
| refeq.0 |
|
| Ref | Expression |
|---|---|
| refeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refeq.f |
. . 3
| |
| 2 | 1 | ffnd 5408 |
. 2
|
| 3 | refeq.g |
. . 3
| |
| 4 | 3 | ffnd 5408 |
. 2
|
| 5 | refeq.0 |
. . . . . 6
| |
| 6 | 5 | ad2antrr 488 |
. . . . 5
|
| 7 | simplr 528 |
. . . . . . . 8
| |
| 8 | 0red 8027 |
. . . . . . . 8
| |
| 9 | simpr 110 |
. . . . . . . . . . 11
| |
| 10 | 1 | ffvelcdmda 5697 |
. . . . . . . . . . . . . 14
|
| 11 | 10 | recnd 8055 |
. . . . . . . . . . . . 13
|
| 12 | 11 | adantr 276 |
. . . . . . . . . . . 12
|
| 13 | 3 | ffvelcdmda 5697 |
. . . . . . . . . . . . . 14
|
| 14 | 13 | recnd 8055 |
. . . . . . . . . . . . 13
|
| 15 | 14 | adantr 276 |
. . . . . . . . . . . 12
|
| 16 | apne 8650 |
. . . . . . . . . . . 12
| |
| 17 | 12, 15, 16 | syl2anc 411 |
. . . . . . . . . . 11
|
| 18 | 9, 17 | mpd 13 |
. . . . . . . . . 10
|
| 19 | 18 | neneqd 2388 |
. . . . . . . . 9
|
| 20 | refeq.gt0 |
. . . . . . . . . . 11
| |
| 21 | 20 | r19.21bi 2585 |
. . . . . . . . . 10
|
| 22 | 21 | adantr 276 |
. . . . . . . . 9
|
| 23 | 19, 22 | mtod 664 |
. . . . . . . 8
|
| 24 | 7, 8, 23 | nltled 8147 |
. . . . . . 7
|
| 25 | refeq.lt0 |
. . . . . . . . . . 11
| |
| 26 | 25 | r19.21bi 2585 |
. . . . . . . . . 10
|
| 27 | 26 | adantr 276 |
. . . . . . . . 9
|
| 28 | 19, 27 | mtod 664 |
. . . . . . . 8
|
| 29 | 8, 7, 28 | nltled 8147 |
. . . . . . 7
|
| 30 | 7, 8 | letri3d 8142 |
. . . . . . 7
|
| 31 | 24, 29, 30 | mpbir2and 946 |
. . . . . 6
|
| 32 | 31 | fveq2d 5562 |
. . . . 5
|
| 33 | 31 | fveq2d 5562 |
. . . . 5
|
| 34 | 6, 32, 33 | 3eqtr4d 2239 |
. . . 4
|
| 35 | 34, 19 | pm2.65da 662 |
. . 3
|
| 36 | apti 8649 |
. . . 4
| |
| 37 | 11, 14, 36 | syl2anc 411 |
. . 3
|
| 38 | 35, 37 | mpbird 167 |
. 2
|
| 39 | 2, 4, 38 | eqfnfvd 5662 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |