ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnv Unicode version

Theorem divcnv 11841
Description: The sequence of reciprocals of positive integers, multiplied by the factor  A, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
Assertion
Ref Expression
divcnv  |-  ( A  e.  CC  ->  (
n  e.  NN  |->  ( A  /  n ) )  ~~>  0 )
Distinct variable group:    A, n

Proof of Theorem divcnv
Dummy variables  j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A  e.  CC )
21abscld 11525 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( abs `  A
)  e.  RR )
3 simpr 110 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  RR+ )
42, 3rerpdivcld 9852 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( abs `  A
)  /  x )  e.  RR )
5 arch 9294 . . . . 5  |-  ( ( ( abs `  A
)  /  x )  e.  RR  ->  E. j  e.  NN  ( ( abs `  A )  /  x
)  <  j )
64, 5syl 14 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. j  e.  NN  ( ( abs `  A
)  /  x )  <  j )
71ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  ->  A  e.  CC )
8 eluzelz 9659 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
98adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  ZZ )
109zcnd 9498 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  CC )
119zred 9497 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  RR )
12 0red 8075 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  e.  RR )
13 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  e.  NN )
1413nnred 9051 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  e.  RR )
1513nngt0d 9082 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  <  j )
16 eluzle 9662 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  j
)  ->  j  <_  k )
1716adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  <_  k )
1812, 14, 11, 15, 17ltletrd 8498 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  <  k )
1911, 18gt0ap0d 8704 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k #  0 )
207, 10, 19absdivapd 11539 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  ( A  /  k ) )  =  ( ( abs `  A )  /  ( abs `  k ) ) )
2112, 11, 18ltled 8193 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  <_  k )
2211, 21absidd 11511 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  k
)  =  k )
2322oveq2d 5962 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  ( abs `  k ) )  =  ( ( abs `  A
)  /  k ) )
2420, 23eqtrd 2238 . . . . . . . 8  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  ( A  /  k ) )  =  ( ( abs `  A )  /  k
) )
252ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  A
)  e.  RR )
263ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  ->  x  e.  RR+ )
2711, 18elrpd 9817 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  RR+ )
284ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  x )  e.  RR )
29 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  x )  <  j )
3028, 14, 11, 29, 17ltletrd 8498 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  x )  <  k )
3125, 26, 27, 30ltdiv23d 9881 . . . . . . . 8  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  k )  <  x )
3224, 31eqbrtrd 4067 . . . . . . 7  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  ( A  /  k ) )  <  x )
3332ralrimiva 2579 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  /  k ) )  <  x )
3433ex 115 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( ( ( abs `  A )  /  x )  < 
j  ->  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  /  k ) )  <  x ) )
3534reximdva 2608 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( E. j  e.  NN  ( ( abs `  A )  /  x
)  <  j  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( A  /  k
) )  <  x
) )
366, 35mpd 13 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( A  /  k
) )  <  x
)
3736ralrimiva 2579 . 2  |-  ( A  e.  CC  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  /  k ) )  <  x )
38 nnuz 9686 . . 3  |-  NN  =  ( ZZ>= `  1 )
39 1zzd 9401 . . 3  |-  ( A  e.  CC  ->  1  e.  ZZ )
40 nnex 9044 . . . . 5  |-  NN  e.  _V
4140mptex 5812 . . . 4  |-  ( n  e.  NN  |->  ( A  /  n ) )  e.  _V
4241a1i 9 . . 3  |-  ( A  e.  CC  ->  (
n  e.  NN  |->  ( A  /  n ) )  e.  _V )
43 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  k  e.  NN )
44 simpl 109 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  A  e.  CC )
4543nncnd 9052 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  k  e.  CC )
4643nnap0d 9084 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  k #  0 )
4744, 45, 46divclapd 8865 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  /  k
)  e.  CC )
48 oveq2 5954 . . . . 5  |-  ( n  =  k  ->  ( A  /  n )  =  ( A  /  k
) )
49 eqid 2205 . . . . 5  |-  ( n  e.  NN  |->  ( A  /  n ) )  =  ( n  e.  NN  |->  ( A  /  n ) )
5048, 49fvmptg 5657 . . . 4  |-  ( ( k  e.  NN  /\  ( A  /  k
)  e.  CC )  ->  ( ( n  e.  NN  |->  ( A  /  n ) ) `
 k )  =  ( A  /  k
) )
5143, 47, 50syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( A  /  n ) ) `  k )  =  ( A  /  k ) )
5238, 39, 42, 51, 47clim0c 11630 . 2  |-  ( A  e.  CC  ->  (
( n  e.  NN  |->  ( A  /  n
) )  ~~>  0  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  /  k ) )  <  x ) )
5337, 52mpbird 167 1  |-  ( A  e.  CC  ->  (
n  e.  NN  |->  ( A  /  n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   _Vcvv 2772   class class class wbr 4045    |-> cmpt 4106   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    < clt 8109    <_ cle 8110    / cdiv 8747   NNcn 9038   ZZcz 9374   ZZ>=cuz 9650   RR+crp 9777   abscabs 11341    ~~> cli 11622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623
This theorem is referenced by:  trireciplem  11844  expcnvap0  11846
  Copyright terms: Public domain W3C validator