ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcnv Unicode version

Theorem divcnv 11206
Description: The sequence of reciprocals of positive integers, multiplied by the factor  A, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
Assertion
Ref Expression
divcnv  |-  ( A  e.  CC  ->  (
n  e.  NN  |->  ( A  /  n ) )  ~~>  0 )
Distinct variable group:    A, n

Proof of Theorem divcnv
Dummy variables  j  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A  e.  CC )
21abscld 10893 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( abs `  A
)  e.  RR )
3 simpr 109 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  RR+ )
42, 3rerpdivcld 9461 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( abs `  A
)  /  x )  e.  RR )
5 arch 8925 . . . . 5  |-  ( ( ( abs `  A
)  /  x )  e.  RR  ->  E. j  e.  NN  ( ( abs `  A )  /  x
)  <  j )
64, 5syl 14 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. j  e.  NN  ( ( abs `  A
)  /  x )  <  j )
71ad3antrrr 481 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  ->  A  e.  CC )
8 eluzelz 9284 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
98adantl 273 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  ZZ )
109zcnd 9125 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  CC )
119zred 9124 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  RR )
12 0red 7731 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  e.  RR )
13 simpllr 506 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  e.  NN )
1413nnred 8690 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  e.  RR )
1513nngt0d 8721 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  <  j )
16 eluzle 9287 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  j
)  ->  j  <_  k )
1716adantl 273 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
j  <_  k )
1812, 14, 11, 15, 17ltletrd 8149 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  <  k )
1911, 18gt0ap0d 8354 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k #  0 )
207, 10, 19absdivapd 10907 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  ( A  /  k ) )  =  ( ( abs `  A )  /  ( abs `  k ) ) )
2112, 11, 18ltled 7845 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
0  <_  k )
2211, 21absidd 10879 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  k
)  =  k )
2322oveq2d 5756 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  ( abs `  k ) )  =  ( ( abs `  A
)  /  k ) )
2420, 23eqtrd 2148 . . . . . . . 8  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  ( A  /  k ) )  =  ( ( abs `  A )  /  k
) )
252ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  A
)  e.  RR )
263ad3antrrr 481 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  ->  x  e.  RR+ )
2711, 18elrpd 9427 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  RR+ )
284ad3antrrr 481 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  x )  e.  RR )
29 simplr 502 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  x )  <  j )
3028, 14, 11, 29, 17ltletrd 8149 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  x )  <  k )
3125, 26, 27, 30ltdiv23d 9490 . . . . . . . 8  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  A
)  /  k )  <  x )
3224, 31eqbrtrd 3918 . . . . . . 7  |-  ( ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( abs `  ( A  /  k ) )  <  x )
3332ralrimiva 2480 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  (
( abs `  A
)  /  x )  <  j )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  /  k ) )  <  x )
3433ex 114 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( ( ( abs `  A )  /  x )  < 
j  ->  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  /  k ) )  <  x ) )
3534reximdva 2509 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( E. j  e.  NN  ( ( abs `  A )  /  x
)  <  j  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( A  /  k
) )  <  x
) )
366, 35mpd 13 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( A  /  k
) )  <  x
)
3736ralrimiva 2480 . 2  |-  ( A  e.  CC  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  /  k ) )  <  x )
38 nnuz 9310 . . 3  |-  NN  =  ( ZZ>= `  1 )
39 1zzd 9032 . . 3  |-  ( A  e.  CC  ->  1  e.  ZZ )
40 nnex 8683 . . . . 5  |-  NN  e.  _V
4140mptex 5612 . . . 4  |-  ( n  e.  NN  |->  ( A  /  n ) )  e.  _V
4241a1i 9 . . 3  |-  ( A  e.  CC  ->  (
n  e.  NN  |->  ( A  /  n ) )  e.  _V )
43 simpr 109 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  k  e.  NN )
44 simpl 108 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  A  e.  CC )
4543nncnd 8691 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  k  e.  CC )
4643nnap0d 8723 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  k #  0 )
4744, 45, 46divclapd 8510 . . . 4  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( A  /  k
)  e.  CC )
48 oveq2 5748 . . . . 5  |-  ( n  =  k  ->  ( A  /  n )  =  ( A  /  k
) )
49 eqid 2115 . . . . 5  |-  ( n  e.  NN  |->  ( A  /  n ) )  =  ( n  e.  NN  |->  ( A  /  n ) )
5048, 49fvmptg 5463 . . . 4  |-  ( ( k  e.  NN  /\  ( A  /  k
)  e.  CC )  ->  ( ( n  e.  NN  |->  ( A  /  n ) ) `
 k )  =  ( A  /  k
) )
5143, 47, 50syl2anc 406 . . 3  |-  ( ( A  e.  CC  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( A  /  n ) ) `  k )  =  ( A  /  k ) )
5238, 39, 42, 51, 47clim0c 10995 . 2  |-  ( A  e.  CC  ->  (
( n  e.  NN  |->  ( A  /  n
) )  ~~>  0  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  /  k ) )  <  x ) )
5337, 52mpbird 166 1  |-  ( A  e.  CC  ->  (
n  e.  NN  |->  ( A  /  n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   A.wral 2391   E.wrex 2392   _Vcvv 2658   class class class wbr 3897    |-> cmpt 3957   ` cfv 5091  (class class class)co 5740   CCcc 7582   RRcr 7583   0cc0 7584   1c1 7585    < clt 7764    <_ cle 7765    / cdiv 8392   NNcn 8677   ZZcz 9005   ZZ>=cuz 9275   RR+crp 9390   abscabs 10709    ~~> cli 10987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-rp 9391  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-clim 10988
This theorem is referenced by:  trireciplem  11209  expcnvap0  11211
  Copyright terms: Public domain W3C validator