| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > redcwlpo | Unicode version | ||
| Description: Decidability of real
number equality implies the Weak Limited Principle
of Omniscience (WLPO). We expect that we'd need some form of countable
choice to prove the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 16128). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones. Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO". WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10404 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| Ref | Expression |
|---|---|
| redcwlpo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . 6
| |
| 2 | elmapi 6769 |
. . . . . . . . 9
| |
| 3 | 2 | adantl 277 |
. . . . . . . 8
|
| 4 | oveq2 5964 |
. . . . . . . . . . 11
| |
| 5 | 4 | oveq2d 5972 |
. . . . . . . . . 10
|
| 6 | fveq2 5588 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | oveq12d 5974 |
. . . . . . . . 9
|
| 8 | 7 | cbvsumv 11742 |
. . . . . . . 8
|
| 9 | 3, 8 | trilpolemcl 16111 |
. . . . . . 7
|
| 10 | 1red 8102 |
. . . . . . 7
| |
| 11 | eqeq1 2213 |
. . . . . . . . 9
| |
| 12 | 11 | dcbid 840 |
. . . . . . . 8
|
| 13 | eqeq2 2216 |
. . . . . . . . 9
| |
| 14 | 13 | dcbid 840 |
. . . . . . . 8
|
| 15 | 12, 14 | rspc2v 2894 |
. . . . . . 7
|
| 16 | 9, 10, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | 1, 16 | mpd 13 |
. . . . 5
|
| 18 | 3, 8 | redcwlpolemeq1 16128 |
. . . . . 6
|
| 19 | 18 | dcbid 840 |
. . . . 5
|
| 20 | 17, 19 | mpbid 147 |
. . . 4
|
| 21 | 20 | ralrimiva 2580 |
. . 3
|
| 22 | nnex 9057 |
. . . 4
| |
| 23 | iswomninn 16124 |
. . . 4
| |
| 24 | 22, 23 | ax-mp 5 |
. . 3
|
| 25 | 21, 24 | sylibr 134 |
. 2
|
| 26 | nnenom 10596 |
. . 3
| |
| 27 | enwomni 7286 |
. . 3
| |
| 28 | 26, 27 | ax-mp 5 |
. 2
|
| 29 | 25, 28 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-2o 6515 df-oadd 6518 df-er 6632 df-map 6749 df-en 6840 df-dom 6841 df-fin 6842 df-womni 7280 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-ico 10031 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-exp 10701 df-ihash 10938 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-clim 11660 df-sumdc 11735 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |