ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evenennn Unicode version

Theorem evenennn 12407
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
Assertion
Ref Expression
evenennn  |-  { z  e.  NN  |  2 
||  z }  ~~  NN

Proof of Theorem evenennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8938 . . 3  |-  NN  e.  _V
21rabex 4159 . 2  |-  { z  e.  NN  |  2 
||  z }  e.  _V
3 breq2 4019 . . . 4  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
43elrab 2905 . . 3  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  <->  ( x  e.  NN  /\  2  ||  x ) )
5 nnehalf 11922 . . 3  |-  ( ( x  e.  NN  /\  2  ||  x )  -> 
( x  /  2
)  e.  NN )
64, 5sylbi 121 . 2  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  ( x  /  2 )  e.  NN )
7 2nn 9093 . . . . 5  |-  2  e.  NN
87a1i 9 . . . 4  |-  ( y  e.  NN  ->  2  e.  NN )
9 id 19 . . . 4  |-  ( y  e.  NN  ->  y  e.  NN )
108, 9nnmulcld 8981 . . 3  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  NN )
11 2z 9294 . . . 4  |-  2  e.  ZZ
12 nnz 9285 . . . 4  |-  ( y  e.  NN  ->  y  e.  ZZ )
13 dvdsmul1 11833 . . . 4  |-  ( ( 2  e.  ZZ  /\  y  e.  ZZ )  ->  2  ||  ( 2  x.  y ) )
1411, 12, 13sylancr 414 . . 3  |-  ( y  e.  NN  ->  2  ||  ( 2  x.  y
) )
15 breq2 4019 . . . 4  |-  ( z  =  ( 2  x.  y )  ->  (
2  ||  z  <->  2  ||  ( 2  x.  y
) ) )
1615elrab 2905 . . 3  |-  ( ( 2  x.  y )  e.  { z  e.  NN  |  2  ||  z }  <->  ( ( 2  x.  y )  e.  NN  /\  2  ||  ( 2  x.  y
) ) )
1710, 14, 16sylanbrc 417 . 2  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  { z  e.  NN  |  2  ||  z } )
18 elrabi 2902 . . . . . 6  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  x  e.  NN )
1918adantr 276 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  NN )
2019nncnd 8946 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  CC )
21 simpr 110 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  NN )
2221nncnd 8946 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  CC )
23 2cnd 9005 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2  e.  CC )
24 2ap0 9025 . . . . 5  |-  2 #  0
2524a1i 9 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2 #  0 )
2620, 22, 23, 25divmulap3d 8795 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
x  =  ( y  x.  2 ) ) )
27 eqcom 2189 . . . 4  |-  ( ( x  /  2 )  =  y  <->  y  =  ( x  /  2
) )
2827a1i 9 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
y  =  ( x  /  2 ) ) )
2922, 23mulcomd 7992 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
3029eqeq2d 2199 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( y  x.  2 )  <-> 
x  =  ( 2  x.  y ) ) )
3126, 28, 303bitr3rd 219 . 2  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( 2  x.  y )  <-> 
y  =  ( x  /  2 ) ) )
322, 1, 6, 17, 31en3i 6784 1  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   {crab 2469   class class class wbr 4015  (class class class)co 5888    ~~ cen 6751   0cc0 7824    x. cmul 7829   # cap 8551    / cdiv 8642   NNcn 8932   2c2 8983   ZZcz 9266    || cdvds 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-en 6754  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-dvds 11808
This theorem is referenced by:  unennn  12411
  Copyright terms: Public domain W3C validator