ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evenennn Unicode version

Theorem evenennn 11942
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
Assertion
Ref Expression
evenennn  |-  { z  e.  NN  |  2 
||  z }  ~~  NN

Proof of Theorem evenennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8750 . . 3  |-  NN  e.  _V
21rabex 4080 . 2  |-  { z  e.  NN  |  2 
||  z }  e.  _V
3 breq2 3941 . . . 4  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
43elrab 2844 . . 3  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  <->  ( x  e.  NN  /\  2  ||  x ) )
5 nnehalf 11637 . . 3  |-  ( ( x  e.  NN  /\  2  ||  x )  -> 
( x  /  2
)  e.  NN )
64, 5sylbi 120 . 2  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  ( x  /  2 )  e.  NN )
7 2nn 8905 . . . . 5  |-  2  e.  NN
87a1i 9 . . . 4  |-  ( y  e.  NN  ->  2  e.  NN )
9 id 19 . . . 4  |-  ( y  e.  NN  ->  y  e.  NN )
108, 9nnmulcld 8793 . . 3  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  NN )
11 2z 9106 . . . 4  |-  2  e.  ZZ
12 nnz 9097 . . . 4  |-  ( y  e.  NN  ->  y  e.  ZZ )
13 dvdsmul1 11551 . . . 4  |-  ( ( 2  e.  ZZ  /\  y  e.  ZZ )  ->  2  ||  ( 2  x.  y ) )
1411, 12, 13sylancr 411 . . 3  |-  ( y  e.  NN  ->  2  ||  ( 2  x.  y
) )
15 breq2 3941 . . . 4  |-  ( z  =  ( 2  x.  y )  ->  (
2  ||  z  <->  2  ||  ( 2  x.  y
) ) )
1615elrab 2844 . . 3  |-  ( ( 2  x.  y )  e.  { z  e.  NN  |  2  ||  z }  <->  ( ( 2  x.  y )  e.  NN  /\  2  ||  ( 2  x.  y
) ) )
1710, 14, 16sylanbrc 414 . 2  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  { z  e.  NN  |  2  ||  z } )
18 elrabi 2841 . . . . . 6  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  x  e.  NN )
1918adantr 274 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  NN )
2019nncnd 8758 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  CC )
21 simpr 109 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  NN )
2221nncnd 8758 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  CC )
23 2cnd 8817 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2  e.  CC )
24 2ap0 8837 . . . . 5  |-  2 #  0
2524a1i 9 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2 #  0 )
2620, 22, 23, 25divmulap3d 8609 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
x  =  ( y  x.  2 ) ) )
27 eqcom 2142 . . . 4  |-  ( ( x  /  2 )  =  y  <->  y  =  ( x  /  2
) )
2827a1i 9 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
y  =  ( x  /  2 ) ) )
2922, 23mulcomd 7811 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
3029eqeq2d 2152 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( y  x.  2 )  <-> 
x  =  ( 2  x.  y ) ) )
3126, 28, 303bitr3rd 218 . 2  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( 2  x.  y )  <-> 
y  =  ( x  /  2 ) ) )
322, 1, 6, 17, 31en3i 6673 1  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {crab 2421   class class class wbr 3937  (class class class)co 5782    ~~ cen 6640   0cc0 7644    x. cmul 7649   # cap 8367    / cdiv 8456   NNcn 8744   2c2 8795   ZZcz 9078    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-en 6643  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-dvds 11530
This theorem is referenced by:  unennn  11946
  Copyright terms: Public domain W3C validator