ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evenennn Unicode version

Theorem evenennn 12879
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
Assertion
Ref Expression
evenennn  |-  { z  e.  NN  |  2 
||  z }  ~~  NN

Proof of Theorem evenennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 9077 . . 3  |-  NN  e.  _V
21rabex 4204 . 2  |-  { z  e.  NN  |  2 
||  z }  e.  _V
3 breq2 4063 . . . 4  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
43elrab 2936 . . 3  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  <->  ( x  e.  NN  /\  2  ||  x ) )
5 nnehalf 12330 . . 3  |-  ( ( x  e.  NN  /\  2  ||  x )  -> 
( x  /  2
)  e.  NN )
64, 5sylbi 121 . 2  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  ( x  /  2 )  e.  NN )
7 2nn 9233 . . . . 5  |-  2  e.  NN
87a1i 9 . . . 4  |-  ( y  e.  NN  ->  2  e.  NN )
9 id 19 . . . 4  |-  ( y  e.  NN  ->  y  e.  NN )
108, 9nnmulcld 9120 . . 3  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  NN )
11 2z 9435 . . . 4  |-  2  e.  ZZ
12 nnz 9426 . . . 4  |-  ( y  e.  NN  ->  y  e.  ZZ )
13 dvdsmul1 12239 . . . 4  |-  ( ( 2  e.  ZZ  /\  y  e.  ZZ )  ->  2  ||  ( 2  x.  y ) )
1411, 12, 13sylancr 414 . . 3  |-  ( y  e.  NN  ->  2  ||  ( 2  x.  y
) )
15 breq2 4063 . . . 4  |-  ( z  =  ( 2  x.  y )  ->  (
2  ||  z  <->  2  ||  ( 2  x.  y
) ) )
1615elrab 2936 . . 3  |-  ( ( 2  x.  y )  e.  { z  e.  NN  |  2  ||  z }  <->  ( ( 2  x.  y )  e.  NN  /\  2  ||  ( 2  x.  y
) ) )
1710, 14, 16sylanbrc 417 . 2  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  { z  e.  NN  |  2  ||  z } )
18 elrabi 2933 . . . . . 6  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  x  e.  NN )
1918adantr 276 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  NN )
2019nncnd 9085 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  CC )
21 simpr 110 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  NN )
2221nncnd 9085 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  CC )
23 2cnd 9144 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2  e.  CC )
24 2ap0 9164 . . . . 5  |-  2 #  0
2524a1i 9 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2 #  0 )
2620, 22, 23, 25divmulap3d 8933 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
x  =  ( y  x.  2 ) ) )
27 eqcom 2209 . . . 4  |-  ( ( x  /  2 )  =  y  <->  y  =  ( x  /  2
) )
2827a1i 9 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
y  =  ( x  /  2 ) ) )
2922, 23mulcomd 8129 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
3029eqeq2d 2219 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( y  x.  2 )  <-> 
x  =  ( 2  x.  y ) ) )
3126, 28, 303bitr3rd 219 . 2  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( 2  x.  y )  <-> 
y  =  ( x  /  2 ) ) )
322, 1, 6, 17, 31en3i 6885 1  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490   class class class wbr 4059  (class class class)co 5967    ~~ cen 6848   0cc0 7960    x. cmul 7965   # cap 8689    / cdiv 8780   NNcn 9071   2c2 9122   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-en 6851  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-dvds 12214
This theorem is referenced by:  unennn  12883
  Copyright terms: Public domain W3C validator