Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > evenennn | Unicode version |
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
Ref | Expression |
---|---|
evenennn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 8871 | . . 3 | |
2 | 1 | rabex 4131 | . 2 |
3 | breq2 3991 | . . . 4 | |
4 | 3 | elrab 2886 | . . 3 |
5 | nnehalf 11850 | . . 3 | |
6 | 4, 5 | sylbi 120 | . 2 |
7 | 2nn 9026 | . . . . 5 | |
8 | 7 | a1i 9 | . . . 4 |
9 | id 19 | . . . 4 | |
10 | 8, 9 | nnmulcld 8914 | . . 3 |
11 | 2z 9227 | . . . 4 | |
12 | nnz 9218 | . . . 4 | |
13 | dvdsmul1 11762 | . . . 4 | |
14 | 11, 12, 13 | sylancr 412 | . . 3 |
15 | breq2 3991 | . . . 4 | |
16 | 15 | elrab 2886 | . . 3 |
17 | 10, 14, 16 | sylanbrc 415 | . 2 |
18 | elrabi 2883 | . . . . . 6 | |
19 | 18 | adantr 274 | . . . . 5 |
20 | 19 | nncnd 8879 | . . . 4 |
21 | simpr 109 | . . . . 5 | |
22 | 21 | nncnd 8879 | . . . 4 |
23 | 2cnd 8938 | . . . 4 | |
24 | 2ap0 8958 | . . . . 5 # | |
25 | 24 | a1i 9 | . . . 4 # |
26 | 20, 22, 23, 25 | divmulap3d 8729 | . . 3 |
27 | eqcom 2172 | . . . 4 | |
28 | 27 | a1i 9 | . . 3 |
29 | 22, 23 | mulcomd 7928 | . . . 4 |
30 | 29 | eqeq2d 2182 | . . 3 |
31 | 26, 28, 30 | 3bitr3rd 218 | . 2 |
32 | 2, 1, 6, 17, 31 | en3i 6745 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 crab 2452 class class class wbr 3987 (class class class)co 5850 cen 6712 cc0 7761 cmul 7766 # cap 8487 cdiv 8576 cn 8865 c2 8916 cz 9199 cdvds 11736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-en 6715 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-n0 9123 df-z 9200 df-dvds 11737 |
This theorem is referenced by: unennn 12339 |
Copyright terms: Public domain | W3C validator |