ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evenennn Unicode version

Theorem evenennn 12553
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
Assertion
Ref Expression
evenennn  |-  { z  e.  NN  |  2 
||  z }  ~~  NN

Proof of Theorem evenennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8990 . . 3  |-  NN  e.  _V
21rabex 4174 . 2  |-  { z  e.  NN  |  2 
||  z }  e.  _V
3 breq2 4034 . . . 4  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
43elrab 2917 . . 3  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  <->  ( x  e.  NN  /\  2  ||  x ) )
5 nnehalf 12048 . . 3  |-  ( ( x  e.  NN  /\  2  ||  x )  -> 
( x  /  2
)  e.  NN )
64, 5sylbi 121 . 2  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  ( x  /  2 )  e.  NN )
7 2nn 9146 . . . . 5  |-  2  e.  NN
87a1i 9 . . . 4  |-  ( y  e.  NN  ->  2  e.  NN )
9 id 19 . . . 4  |-  ( y  e.  NN  ->  y  e.  NN )
108, 9nnmulcld 9033 . . 3  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  NN )
11 2z 9348 . . . 4  |-  2  e.  ZZ
12 nnz 9339 . . . 4  |-  ( y  e.  NN  ->  y  e.  ZZ )
13 dvdsmul1 11959 . . . 4  |-  ( ( 2  e.  ZZ  /\  y  e.  ZZ )  ->  2  ||  ( 2  x.  y ) )
1411, 12, 13sylancr 414 . . 3  |-  ( y  e.  NN  ->  2  ||  ( 2  x.  y
) )
15 breq2 4034 . . . 4  |-  ( z  =  ( 2  x.  y )  ->  (
2  ||  z  <->  2  ||  ( 2  x.  y
) ) )
1615elrab 2917 . . 3  |-  ( ( 2  x.  y )  e.  { z  e.  NN  |  2  ||  z }  <->  ( ( 2  x.  y )  e.  NN  /\  2  ||  ( 2  x.  y
) ) )
1710, 14, 16sylanbrc 417 . 2  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  { z  e.  NN  |  2  ||  z } )
18 elrabi 2914 . . . . . 6  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  x  e.  NN )
1918adantr 276 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  NN )
2019nncnd 8998 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  CC )
21 simpr 110 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  NN )
2221nncnd 8998 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  CC )
23 2cnd 9057 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2  e.  CC )
24 2ap0 9077 . . . . 5  |-  2 #  0
2524a1i 9 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2 #  0 )
2620, 22, 23, 25divmulap3d 8846 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
x  =  ( y  x.  2 ) ) )
27 eqcom 2195 . . . 4  |-  ( ( x  /  2 )  =  y  <->  y  =  ( x  /  2
) )
2827a1i 9 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
y  =  ( x  /  2 ) ) )
2922, 23mulcomd 8043 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
3029eqeq2d 2205 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( y  x.  2 )  <-> 
x  =  ( 2  x.  y ) ) )
3126, 28, 303bitr3rd 219 . 2  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( 2  x.  y )  <-> 
y  =  ( x  /  2 ) ) )
322, 1, 6, 17, 31en3i 6827 1  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {crab 2476   class class class wbr 4030  (class class class)co 5919    ~~ cen 6794   0cc0 7874    x. cmul 7879   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   ZZcz 9320    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-en 6797  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-dvds 11934
This theorem is referenced by:  unennn  12557
  Copyright terms: Public domain W3C validator