Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > evenennn | Unicode version |
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
Ref | Expression |
---|---|
evenennn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 8884 | . . 3 | |
2 | 1 | rabex 4133 | . 2 |
3 | breq2 3993 | . . . 4 | |
4 | 3 | elrab 2886 | . . 3 |
5 | nnehalf 11863 | . . 3 | |
6 | 4, 5 | sylbi 120 | . 2 |
7 | 2nn 9039 | . . . . 5 | |
8 | 7 | a1i 9 | . . . 4 |
9 | id 19 | . . . 4 | |
10 | 8, 9 | nnmulcld 8927 | . . 3 |
11 | 2z 9240 | . . . 4 | |
12 | nnz 9231 | . . . 4 | |
13 | dvdsmul1 11775 | . . . 4 | |
14 | 11, 12, 13 | sylancr 412 | . . 3 |
15 | breq2 3993 | . . . 4 | |
16 | 15 | elrab 2886 | . . 3 |
17 | 10, 14, 16 | sylanbrc 415 | . 2 |
18 | elrabi 2883 | . . . . . 6 | |
19 | 18 | adantr 274 | . . . . 5 |
20 | 19 | nncnd 8892 | . . . 4 |
21 | simpr 109 | . . . . 5 | |
22 | 21 | nncnd 8892 | . . . 4 |
23 | 2cnd 8951 | . . . 4 | |
24 | 2ap0 8971 | . . . . 5 # | |
25 | 24 | a1i 9 | . . . 4 # |
26 | 20, 22, 23, 25 | divmulap3d 8742 | . . 3 |
27 | eqcom 2172 | . . . 4 | |
28 | 27 | a1i 9 | . . 3 |
29 | 22, 23 | mulcomd 7941 | . . . 4 |
30 | 29 | eqeq2d 2182 | . . 3 |
31 | 26, 28, 30 | 3bitr3rd 218 | . 2 |
32 | 2, 1, 6, 17, 31 | en3i 6749 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 crab 2452 class class class wbr 3989 (class class class)co 5853 cen 6716 cc0 7774 cmul 7779 # cap 8500 cdiv 8589 cn 8878 c2 8929 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-en 6719 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-dvds 11750 |
This theorem is referenced by: unennn 12352 |
Copyright terms: Public domain | W3C validator |