ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evenennn Unicode version

Theorem evenennn 12348
Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
Assertion
Ref Expression
evenennn  |-  { z  e.  NN  |  2 
||  z }  ~~  NN

Proof of Theorem evenennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 8884 . . 3  |-  NN  e.  _V
21rabex 4133 . 2  |-  { z  e.  NN  |  2 
||  z }  e.  _V
3 breq2 3993 . . . 4  |-  ( z  =  x  ->  (
2  ||  z  <->  2  ||  x ) )
43elrab 2886 . . 3  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  <->  ( x  e.  NN  /\  2  ||  x ) )
5 nnehalf 11863 . . 3  |-  ( ( x  e.  NN  /\  2  ||  x )  -> 
( x  /  2
)  e.  NN )
64, 5sylbi 120 . 2  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  ( x  /  2 )  e.  NN )
7 2nn 9039 . . . . 5  |-  2  e.  NN
87a1i 9 . . . 4  |-  ( y  e.  NN  ->  2  e.  NN )
9 id 19 . . . 4  |-  ( y  e.  NN  ->  y  e.  NN )
108, 9nnmulcld 8927 . . 3  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  NN )
11 2z 9240 . . . 4  |-  2  e.  ZZ
12 nnz 9231 . . . 4  |-  ( y  e.  NN  ->  y  e.  ZZ )
13 dvdsmul1 11775 . . . 4  |-  ( ( 2  e.  ZZ  /\  y  e.  ZZ )  ->  2  ||  ( 2  x.  y ) )
1411, 12, 13sylancr 412 . . 3  |-  ( y  e.  NN  ->  2  ||  ( 2  x.  y
) )
15 breq2 3993 . . . 4  |-  ( z  =  ( 2  x.  y )  ->  (
2  ||  z  <->  2  ||  ( 2  x.  y
) ) )
1615elrab 2886 . . 3  |-  ( ( 2  x.  y )  e.  { z  e.  NN  |  2  ||  z }  <->  ( ( 2  x.  y )  e.  NN  /\  2  ||  ( 2  x.  y
) ) )
1710, 14, 16sylanbrc 415 . 2  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  { z  e.  NN  |  2  ||  z } )
18 elrabi 2883 . . . . . 6  |-  ( x  e.  { z  e.  NN  |  2  ||  z }  ->  x  e.  NN )
1918adantr 274 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  NN )
2019nncnd 8892 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  x  e.  CC )
21 simpr 109 . . . . 5  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  NN )
2221nncnd 8892 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  y  e.  CC )
23 2cnd 8951 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2  e.  CC )
24 2ap0 8971 . . . . 5  |-  2 #  0
2524a1i 9 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  2 #  0 )
2620, 22, 23, 25divmulap3d 8742 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
x  =  ( y  x.  2 ) ) )
27 eqcom 2172 . . . 4  |-  ( ( x  /  2 )  =  y  <->  y  =  ( x  /  2
) )
2827a1i 9 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( ( x  / 
2 )  =  y  <-> 
y  =  ( x  /  2 ) ) )
2922, 23mulcomd 7941 . . . 4  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
3029eqeq2d 2182 . . 3  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( y  x.  2 )  <-> 
x  =  ( 2  x.  y ) ) )
3126, 28, 303bitr3rd 218 . 2  |-  ( ( x  e.  { z  e.  NN  |  2 
||  z }  /\  y  e.  NN )  ->  ( x  =  ( 2  x.  y )  <-> 
y  =  ( x  /  2 ) ) )
322, 1, 6, 17, 31en3i 6749 1  |-  { z  e.  NN  |  2 
||  z }  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989  (class class class)co 5853    ~~ cen 6716   0cc0 7774    x. cmul 7779   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-dvds 11750
This theorem is referenced by:  unennn  12352
  Copyright terms: Public domain W3C validator