| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > evenennn | Unicode version | ||
| Description: There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.) |
| Ref | Expression |
|---|---|
| evenennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 8999 |
. . 3
| |
| 2 | 1 | rabex 4178 |
. 2
|
| 3 | breq2 4038 |
. . . 4
| |
| 4 | 3 | elrab 2920 |
. . 3
|
| 5 | nnehalf 12072 |
. . 3
| |
| 6 | 4, 5 | sylbi 121 |
. 2
|
| 7 | 2nn 9155 |
. . . . 5
| |
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | id 19 |
. . . 4
| |
| 10 | 8, 9 | nnmulcld 9042 |
. . 3
|
| 11 | 2z 9357 |
. . . 4
| |
| 12 | nnz 9348 |
. . . 4
| |
| 13 | dvdsmul1 11981 |
. . . 4
| |
| 14 | 11, 12, 13 | sylancr 414 |
. . 3
|
| 15 | breq2 4038 |
. . . 4
| |
| 16 | 15 | elrab 2920 |
. . 3
|
| 17 | 10, 14, 16 | sylanbrc 417 |
. 2
|
| 18 | elrabi 2917 |
. . . . . 6
| |
| 19 | 18 | adantr 276 |
. . . . 5
|
| 20 | 19 | nncnd 9007 |
. . . 4
|
| 21 | simpr 110 |
. . . . 5
| |
| 22 | 21 | nncnd 9007 |
. . . 4
|
| 23 | 2cnd 9066 |
. . . 4
| |
| 24 | 2ap0 9086 |
. . . . 5
| |
| 25 | 24 | a1i 9 |
. . . 4
|
| 26 | 20, 22, 23, 25 | divmulap3d 8855 |
. . 3
|
| 27 | eqcom 2198 |
. . . 4
| |
| 28 | 27 | a1i 9 |
. . 3
|
| 29 | 22, 23 | mulcomd 8051 |
. . . 4
|
| 30 | 29 | eqeq2d 2208 |
. . 3
|
| 31 | 26, 28, 30 | 3bitr3rd 219 |
. 2
|
| 32 | 2, 1, 6, 17, 31 | en3i 6832 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-en 6802 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-n0 9253 df-z 9330 df-dvds 11956 |
| This theorem is referenced by: unennn 12625 |
| Copyright terms: Public domain | W3C validator |