Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpo Unicode version

Theorem nconstwlpo 13599
Description: Existence of a certain non-constant function from reals to integers implies  om  e. WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpo.f  |-  ( ph  ->  F : RR --> ZZ )
nconstwlpo.0  |-  ( ph  ->  ( F `  0
)  =  0 )
nconstwlpo.rp  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
Assertion
Ref Expression
nconstwlpo  |-  ( ph  ->  om  e. WOmni )
Distinct variable groups:    ph, x    x, F

Proof of Theorem nconstwlpo
Dummy variables  g  i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconstwlpo.f . . . . . . 7  |-  ( ph  ->  F : RR --> ZZ )
21adantr 274 . . . . . 6  |-  ( (
ph  /\  g  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  F : RR
--> ZZ )
3 nconstwlpo.0 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  =  0 )
43adantr 274 . . . . . 6  |-  ( (
ph  /\  g  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( F `  0 )  =  0 )
5 nconstwlpo.rp . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0
)
65adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  g  e.  ( { 0 ,  1 }  ^m  NN ) )  /\  x  e.  RR+ )  ->  ( F `  x )  =/=  0 )
7 elmapi 6608 . . . . . . 7  |-  ( g  e.  ( { 0 ,  1 }  ^m  NN )  ->  g : NN --> { 0 ,  1 } )
87adantl 275 . . . . . 6  |-  ( (
ph  /\  g  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  g : NN
--> { 0 ,  1 } )
9 oveq2 5826 . . . . . . . . 9  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
109oveq2d 5834 . . . . . . . 8  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
11 fveq2 5465 . . . . . . . 8  |-  ( i  =  j  ->  (
g `  i )  =  ( g `  j ) )
1210, 11oveq12d 5836 . . . . . . 7  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( g `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( g `  j
) ) )
1312cbvsumv 11240 . . . . . 6  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( g `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( g `
 j ) )
142, 4, 6, 8, 13nconstwlpolem 13598 . . . . 5  |-  ( (
ph  /\  g  e.  ( { 0 ,  1 }  ^m  NN ) )  ->  ( A. y  e.  NN  (
g `  y )  =  0  \/  -.  A. y  e.  NN  (
g `  y )  =  0 ) )
15 df-dc 821 . . . . 5  |-  (DECID  A. y  e.  NN  ( g `  y )  =  0  <-> 
( A. y  e.  NN  ( g `  y )  =  0  \/  -.  A. y  e.  NN  ( g `  y )  =  0 ) )
1614, 15sylibr 133 . . . 4  |-  ( (
ph  /\  g  e.  ( { 0 ,  1 }  ^m  NN ) )  -> DECID  A. y  e.  NN  ( g `  y
)  =  0 )
1716ralrimiva 2530 . . 3  |-  ( ph  ->  A. g  e.  ( { 0 ,  1 }  ^m  NN )DECID  A. y  e.  NN  (
g `  y )  =  0 )
18 nnex 8822 . . . 4  |-  NN  e.  _V
19 iswomni0 13585 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. WOmni 
<-> 
A. g  e.  ( { 0 ,  1 }  ^m  NN )DECID  A. y  e.  NN  (
g `  y )  =  0 ) )
2018, 19ax-mp 5 . . 3  |-  ( NN  e. WOmni 
<-> 
A. g  e.  ( { 0 ,  1 }  ^m  NN )DECID  A. y  e.  NN  (
g `  y )  =  0 )
2117, 20sylibr 133 . 2  |-  ( ph  ->  NN  e. WOmni )
22 nnenom 10315 . . 3  |-  NN  ~~  om
23 enwomni 7096 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. WOmni 
<->  om  e. WOmni ) )
2422, 23ax-mp 5 . 2  |-  ( NN  e. WOmni 
<->  om  e. WOmni )
2521, 24sylib 121 1  |-  ( ph  ->  om  e. WOmni )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   _Vcvv 2712   {cpr 3561   class class class wbr 3965   omcom 4547   -->wf 5163   ` cfv 5167  (class class class)co 5818    ^m cmap 6586    ~~ cen 6676  WOmnicwomni 7089   RRcr 7714   0cc0 7715   1c1 7716    x. cmul 7720    / cdiv 8528   NNcn 8816   2c2 8867   ZZcz 9150   RR+crp 9542   ^cexp 10400   sum_csu 11232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-2o 6358  df-oadd 6361  df-er 6473  df-map 6588  df-en 6679  df-dom 6680  df-fin 6681  df-womni 7090  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-ico 9780  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-sumdc 11233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator