ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ennn Unicode version

Theorem nn0ennn 10199
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn  |-  NN0  ~~  NN

Proof of Theorem nn0ennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 8976 . 2  |-  NN0  e.  _V
2 nnex 8719 . 2  |-  NN  e.  _V
3 nn0p1nn 9009 . 2  |-  ( x  e.  NN0  ->  ( x  +  1 )  e.  NN )
4 nnm1nn0 9011 . 2  |-  ( y  e.  NN  ->  (
y  -  1 )  e.  NN0 )
5 nncn 8721 . . 3  |-  ( y  e.  NN  ->  y  e.  CC )
6 nn0cn 8980 . . 3  |-  ( x  e.  NN0  ->  x  e.  CC )
7 ax-1cn 7706 . . . . . 6  |-  1  e.  CC
8 subadd 7958 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC  /\  x  e.  CC )  ->  (
( y  -  1 )  =  x  <->  ( 1  +  x )  =  y ) )
97, 8mp3an2 1303 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( ( y  - 
1 )  =  x  <-> 
( 1  +  x
)  =  y ) )
10 eqcom 2139 . . . . 5  |-  ( x  =  ( y  - 
1 )  <->  ( y  -  1 )  =  x )
11 eqcom 2139 . . . . 5  |-  ( y  =  ( 1  +  x )  <->  ( 1  +  x )  =  y )
129, 10, 113bitr4g 222 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( 1  +  x ) ) )
13 addcom 7892 . . . . . . 7  |-  ( ( 1  e.  CC  /\  x  e.  CC )  ->  ( 1  +  x
)  =  ( x  +  1 ) )
147, 13mpan 420 . . . . . 6  |-  ( x  e.  CC  ->  (
1  +  x )  =  ( x  + 
1 ) )
1514eqeq2d 2149 . . . . 5  |-  ( x  e.  CC  ->  (
y  =  ( 1  +  x )  <->  y  =  ( x  +  1
) ) )
1615adantl 275 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  =  ( 1  +  x )  <-> 
y  =  ( x  +  1 ) ) )
1712, 16bitrd 187 . . 3  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
185, 6, 17syl2anr 288 . 2  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
191, 2, 3, 4, 18en3i 6658 1  |-  NN0  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767    ~~ cen 6625   CCcc 7611   1c1 7614    + caddc 7616    - cmin 7926   NNcn 8713   NN0cn0 8970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-en 6628  df-sub 7928  df-inn 8714  df-n0 8971
This theorem is referenced by:  nnenom  10200  uzennn  10202  xpnnen  11896  znnen  11900  ennnfonelemim  11926
  Copyright terms: Public domain W3C validator