Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ennn | Unicode version |
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.) |
Ref | Expression |
---|---|
nn0ennn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 9120 | . 2 | |
2 | nnex 8863 | . 2 | |
3 | nn0p1nn 9153 | . 2 | |
4 | nnm1nn0 9155 | . 2 | |
5 | nncn 8865 | . . 3 | |
6 | nn0cn 9124 | . . 3 | |
7 | ax-1cn 7846 | . . . . . 6 | |
8 | subadd 8101 | . . . . . 6 | |
9 | 7, 8 | mp3an2 1315 | . . . . 5 |
10 | eqcom 2167 | . . . . 5 | |
11 | eqcom 2167 | . . . . 5 | |
12 | 9, 10, 11 | 3bitr4g 222 | . . . 4 |
13 | addcom 8035 | . . . . . . 7 | |
14 | 7, 13 | mpan 421 | . . . . . 6 |
15 | 14 | eqeq2d 2177 | . . . . 5 |
16 | 15 | adantl 275 | . . . 4 |
17 | 12, 16 | bitrd 187 | . . 3 |
18 | 5, 6, 17 | syl2anr 288 | . 2 |
19 | 1, 2, 3, 4, 18 | en3i 6737 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cen 6704 cc 7751 c1 7754 caddc 7756 cmin 8069 cn 8857 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-en 6707 df-sub 8071 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nnenom 10369 uzennn 10371 xpnnen 12327 znnen 12331 ennnfonelemim 12357 |
Copyright terms: Public domain | W3C validator |