ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ennn Unicode version

Theorem nn0ennn 10528
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn  |-  NN0  ~~  NN

Proof of Theorem nn0ennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 9258 . 2  |-  NN0  e.  _V
2 nnex 8999 . 2  |-  NN  e.  _V
3 nn0p1nn 9291 . 2  |-  ( x  e.  NN0  ->  ( x  +  1 )  e.  NN )
4 nnm1nn0 9293 . 2  |-  ( y  e.  NN  ->  (
y  -  1 )  e.  NN0 )
5 nncn 9001 . . 3  |-  ( y  e.  NN  ->  y  e.  CC )
6 nn0cn 9262 . . 3  |-  ( x  e.  NN0  ->  x  e.  CC )
7 ax-1cn 7975 . . . . . 6  |-  1  e.  CC
8 subadd 8232 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC  /\  x  e.  CC )  ->  (
( y  -  1 )  =  x  <->  ( 1  +  x )  =  y ) )
97, 8mp3an2 1336 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( ( y  - 
1 )  =  x  <-> 
( 1  +  x
)  =  y ) )
10 eqcom 2198 . . . . 5  |-  ( x  =  ( y  - 
1 )  <->  ( y  -  1 )  =  x )
11 eqcom 2198 . . . . 5  |-  ( y  =  ( 1  +  x )  <->  ( 1  +  x )  =  y )
129, 10, 113bitr4g 223 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( 1  +  x ) ) )
13 addcom 8166 . . . . . . 7  |-  ( ( 1  e.  CC  /\  x  e.  CC )  ->  ( 1  +  x
)  =  ( x  +  1 ) )
147, 13mpan 424 . . . . . 6  |-  ( x  e.  CC  ->  (
1  +  x )  =  ( x  + 
1 ) )
1514eqeq2d 2208 . . . . 5  |-  ( x  e.  CC  ->  (
y  =  ( 1  +  x )  <->  y  =  ( x  +  1
) ) )
1615adantl 277 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  =  ( 1  +  x )  <-> 
y  =  ( x  +  1 ) ) )
1712, 16bitrd 188 . . 3  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
185, 6, 17syl2anr 290 . 2  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
191, 2, 3, 4, 18en3i 6832 1  |-  NN0  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5923    ~~ cen 6799   CCcc 7880   1c1 7883    + caddc 7885    - cmin 8200   NNcn 8993   NN0cn0 9252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-en 6802  df-sub 8202  df-inn 8994  df-n0 9253
This theorem is referenced by:  nnenom  10529  uzennn  10531  xpnnen  12622  znnen  12626  ennnfonelemim  12652
  Copyright terms: Public domain W3C validator