ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ennn Unicode version

Theorem nn0ennn 10236
Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn  |-  NN0  ~~  NN

Proof of Theorem nn0ennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 9006 . 2  |-  NN0  e.  _V
2 nnex 8749 . 2  |-  NN  e.  _V
3 nn0p1nn 9039 . 2  |-  ( x  e.  NN0  ->  ( x  +  1 )  e.  NN )
4 nnm1nn0 9041 . 2  |-  ( y  e.  NN  ->  (
y  -  1 )  e.  NN0 )
5 nncn 8751 . . 3  |-  ( y  e.  NN  ->  y  e.  CC )
6 nn0cn 9010 . . 3  |-  ( x  e.  NN0  ->  x  e.  CC )
7 ax-1cn 7736 . . . . . 6  |-  1  e.  CC
8 subadd 7988 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC  /\  x  e.  CC )  ->  (
( y  -  1 )  =  x  <->  ( 1  +  x )  =  y ) )
97, 8mp3an2 1304 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( ( y  - 
1 )  =  x  <-> 
( 1  +  x
)  =  y ) )
10 eqcom 2142 . . . . 5  |-  ( x  =  ( y  - 
1 )  <->  ( y  -  1 )  =  x )
11 eqcom 2142 . . . . 5  |-  ( y  =  ( 1  +  x )  <->  ( 1  +  x )  =  y )
129, 10, 113bitr4g 222 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( 1  +  x ) ) )
13 addcom 7922 . . . . . . 7  |-  ( ( 1  e.  CC  /\  x  e.  CC )  ->  ( 1  +  x
)  =  ( x  +  1 ) )
147, 13mpan 421 . . . . . 6  |-  ( x  e.  CC  ->  (
1  +  x )  =  ( x  + 
1 ) )
1514eqeq2d 2152 . . . . 5  |-  ( x  e.  CC  ->  (
y  =  ( 1  +  x )  <->  y  =  ( x  +  1
) ) )
1615adantl 275 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  =  ( 1  +  x )  <-> 
y  =  ( x  +  1 ) ) )
1712, 16bitrd 187 . . 3  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
185, 6, 17syl2anr 288 . 2  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
191, 2, 3, 4, 18en3i 6672 1  |-  NN0  ~~  NN
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3936  (class class class)co 5781    ~~ cen 6639   CCcc 7641   1c1 7644    + caddc 7646    - cmin 7956   NNcn 8743   NN0cn0 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-en 6642  df-sub 7958  df-inn 8744  df-n0 9001
This theorem is referenced by:  nnenom  10237  uzennn  10239  xpnnen  11941  znnen  11945  ennnfonelemim  11971
  Copyright terms: Public domain W3C validator