| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgex | Unicode version | ||
| Description: The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| eqgex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | elex 2788 |
. . . 4
| |
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | vex 2779 |
. . . . . . 7
| |
| 6 | vex 2779 |
. . . . . . 7
| |
| 7 | 5, 6 | prss 3800 |
. . . . . 6
|
| 8 | 7 | anbi1i 458 |
. . . . 5
|
| 9 | 8 | opabbii 4127 |
. . . 4
|
| 10 | basfn 13005 |
. . . . . . 7
| |
| 11 | funfvex 5616 |
. . . . . . . 8
| |
| 12 | 11 | funfni 5395 |
. . . . . . 7
|
| 13 | 10, 2, 12 | sylancr 414 |
. . . . . 6
|
| 14 | xpexg 4807 |
. . . . . 6
| |
| 15 | 13, 13, 14 | syl2anc 411 |
. . . . 5
|
| 16 | opabssxp 4767 |
. . . . . 6
| |
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | 15, 17 | ssexd 4200 |
. . . 4
|
| 19 | 9, 18 | eqeltrrid 2295 |
. . 3
|
| 20 | fveq2 5599 |
. . . . . . 7
| |
| 21 | 20 | sseq2d 3231 |
. . . . . 6
|
| 22 | fveq2 5599 |
. . . . . . . 8
| |
| 23 | fveq2 5599 |
. . . . . . . . 9
| |
| 24 | 23 | fveq1d 5601 |
. . . . . . . 8
|
| 25 | eqidd 2208 |
. . . . . . . 8
| |
| 26 | 22, 24, 25 | oveq123d 5988 |
. . . . . . 7
|
| 27 | 26 | eleq1d 2276 |
. . . . . 6
|
| 28 | 21, 27 | anbi12d 473 |
. . . . 5
|
| 29 | 28 | opabbidv 4126 |
. . . 4
|
| 30 | eleq2 2271 |
. . . . . 6
| |
| 31 | 30 | anbi2d 464 |
. . . . 5
|
| 32 | 31 | opabbidv 4126 |
. . . 4
|
| 33 | df-eqg 13623 |
. . . 4
| |
| 34 | 29, 32, 33 | ovmpog 6103 |
. . 3
|
| 35 | 2, 4, 19, 34 | syl3anc 1250 |
. 2
|
| 36 | 35, 19 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-eqg 13623 |
| This theorem is referenced by: quselbasg 13681 quseccl0g 13682 qusghm 13733 quscrng 14410 znval 14513 znle 14514 znbaslemnn 14516 znbas 14521 znzrhval 14524 znzrhfo 14525 |
| Copyright terms: Public domain | W3C validator |