| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgex | Unicode version | ||
| Description: The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| eqgex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | elex 2774 |
. . . 4
| |
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | vex 2766 |
. . . . . . 7
| |
| 6 | vex 2766 |
. . . . . . 7
| |
| 7 | 5, 6 | prss 3778 |
. . . . . 6
|
| 8 | 7 | anbi1i 458 |
. . . . 5
|
| 9 | 8 | opabbii 4100 |
. . . 4
|
| 10 | basfn 12736 |
. . . . . . 7
| |
| 11 | funfvex 5575 |
. . . . . . . 8
| |
| 12 | 11 | funfni 5358 |
. . . . . . 7
|
| 13 | 10, 2, 12 | sylancr 414 |
. . . . . 6
|
| 14 | xpexg 4777 |
. . . . . 6
| |
| 15 | 13, 13, 14 | syl2anc 411 |
. . . . 5
|
| 16 | opabssxp 4737 |
. . . . . 6
| |
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | 15, 17 | ssexd 4173 |
. . . 4
|
| 19 | 9, 18 | eqeltrrid 2284 |
. . 3
|
| 20 | fveq2 5558 |
. . . . . . 7
| |
| 21 | 20 | sseq2d 3213 |
. . . . . 6
|
| 22 | fveq2 5558 |
. . . . . . . 8
| |
| 23 | fveq2 5558 |
. . . . . . . . 9
| |
| 24 | 23 | fveq1d 5560 |
. . . . . . . 8
|
| 25 | eqidd 2197 |
. . . . . . . 8
| |
| 26 | 22, 24, 25 | oveq123d 5943 |
. . . . . . 7
|
| 27 | 26 | eleq1d 2265 |
. . . . . 6
|
| 28 | 21, 27 | anbi12d 473 |
. . . . 5
|
| 29 | 28 | opabbidv 4099 |
. . . 4
|
| 30 | eleq2 2260 |
. . . . . 6
| |
| 31 | 30 | anbi2d 464 |
. . . . 5
|
| 32 | 31 | opabbidv 4099 |
. . . 4
|
| 33 | df-eqg 13302 |
. . . 4
| |
| 34 | 29, 32, 33 | ovmpog 6057 |
. . 3
|
| 35 | 2, 4, 19, 34 | syl3anc 1249 |
. 2
|
| 36 | 35, 19 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-eqg 13302 |
| This theorem is referenced by: quselbasg 13360 quseccl0g 13361 qusghm 13412 quscrng 14089 znval 14192 znle 14193 znbaslemnn 14195 znbas 14200 znzrhval 14203 znzrhfo 14204 |
| Copyright terms: Public domain | W3C validator |