ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgex Unicode version

Theorem eqgex 13753
Description: The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
eqgex  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )

Proof of Theorem eqgex
Dummy variables  i  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
21adantr 276 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  G  e.  _V )
3 elex 2811 . . . 4  |-  ( S  e.  W  ->  S  e.  _V )
43adantl 277 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  S  e.  _V )
5 vex 2802 . . . . . . 7  |-  x  e. 
_V
6 vex 2802 . . . . . . 7  |-  y  e. 
_V
75, 6prss 3823 . . . . . 6  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  <->  { x ,  y }  C_  ( Base `  G )
)
87anbi1i 458 . . . . 5  |-  ( ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
)  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
98opabbii 4150 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }
10 basfn 13086 . . . . . . 7  |-  Base  Fn  _V
11 funfvex 5643 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1211funfni 5422 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1310, 2, 12sylancr 414 . . . . . 6  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( Base `  G
)  e.  _V )
14 xpexg 4832 . . . . . 6  |-  ( ( ( Base `  G
)  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
( Base `  G )  X.  ( Base `  G
) )  e.  _V )
1513, 13, 14syl2anc 411 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( ( Base `  G
)  X.  ( Base `  G ) )  e. 
_V )
16 opabssxp 4792 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  C_  (
( Base `  G )  X.  ( Base `  G
) )
1716a1i 9 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  C_  ( ( Base `  G
)  X.  ( Base `  G ) ) )
1815, 17ssexd 4223 . . . 4  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
199, 18eqeltrrid 2317 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
20 fveq2 5626 . . . . . . 7  |-  ( r  =  G  ->  ( Base `  r )  =  ( Base `  G
) )
2120sseq2d 3254 . . . . . 6  |-  ( r  =  G  ->  ( { x ,  y }  C_  ( Base `  r )  <->  { x ,  y }  C_  ( Base `  G )
) )
22 fveq2 5626 . . . . . . . 8  |-  ( r  =  G  ->  ( +g  `  r )  =  ( +g  `  G
) )
23 fveq2 5626 . . . . . . . . 9  |-  ( r  =  G  ->  ( invg `  r )  =  ( invg `  G ) )
2423fveq1d 5628 . . . . . . . 8  |-  ( r  =  G  ->  (
( invg `  r ) `  x
)  =  ( ( invg `  G
) `  x )
)
25 eqidd 2230 . . . . . . . 8  |-  ( r  =  G  ->  y  =  y )
2622, 24, 25oveq123d 6021 . . . . . . 7  |-  ( r  =  G  ->  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) )
2726eleq1d 2298 . . . . . 6  |-  ( r  =  G  ->  (
( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) )
2821, 27anbi12d 473 . . . . 5  |-  ( r  =  G  ->  (
( { x ,  y }  C_  ( Base `  r )  /\  ( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) ) )
2928opabbidv 4149 . . . 4  |-  ( r  =  G  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) } )
30 eleq2 2293 . . . . . 6  |-  ( i  =  S  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
3130anbi2d 464 . . . . 5  |-  ( i  =  S  ->  (
( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) ) )
3231opabbidv 4149 . . . 4  |-  ( i  =  S  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
33 df-eqg 13704 . . . 4  |- ~QG  =  ( r  e.  _V ,  i  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
3429, 32, 33ovmpog 6138 . . 3  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
352, 4, 19, 34syl3anc 1271 . 2  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) } )
3635, 19eqeltrd 2306 1  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {cpr 3667   {copab 4143    X. cxp 4716    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   invgcminusg 13529   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-eqg 13704
This theorem is referenced by:  quselbasg  13762  quseccl0g  13763  qusghm  13814  quscrng  14491  znval  14594  znle  14595  znbaslemnn  14597  znbas  14602  znzrhval  14605  znzrhfo  14606
  Copyright terms: Public domain W3C validator