ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgex Unicode version

Theorem eqgex 13427
Description: The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
eqgex  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )

Proof of Theorem eqgex
Dummy variables  i  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
21adantr 276 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  G  e.  _V )
3 elex 2774 . . . 4  |-  ( S  e.  W  ->  S  e.  _V )
43adantl 277 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  S  e.  _V )
5 vex 2766 . . . . . . 7  |-  x  e. 
_V
6 vex 2766 . . . . . . 7  |-  y  e. 
_V
75, 6prss 3779 . . . . . 6  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  <->  { x ,  y }  C_  ( Base `  G )
)
87anbi1i 458 . . . . 5  |-  ( ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
)  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
98opabbii 4101 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }
10 basfn 12761 . . . . . . 7  |-  Base  Fn  _V
11 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1211funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1310, 2, 12sylancr 414 . . . . . 6  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( Base `  G
)  e.  _V )
14 xpexg 4778 . . . . . 6  |-  ( ( ( Base `  G
)  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
( Base `  G )  X.  ( Base `  G
) )  e.  _V )
1513, 13, 14syl2anc 411 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( ( Base `  G
)  X.  ( Base `  G ) )  e. 
_V )
16 opabssxp 4738 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  C_  (
( Base `  G )  X.  ( Base `  G
) )
1716a1i 9 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  C_  ( ( Base `  G
)  X.  ( Base `  G ) ) )
1815, 17ssexd 4174 . . . 4  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
199, 18eqeltrrid 2284 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
20 fveq2 5561 . . . . . . 7  |-  ( r  =  G  ->  ( Base `  r )  =  ( Base `  G
) )
2120sseq2d 3214 . . . . . 6  |-  ( r  =  G  ->  ( { x ,  y }  C_  ( Base `  r )  <->  { x ,  y }  C_  ( Base `  G )
) )
22 fveq2 5561 . . . . . . . 8  |-  ( r  =  G  ->  ( +g  `  r )  =  ( +g  `  G
) )
23 fveq2 5561 . . . . . . . . 9  |-  ( r  =  G  ->  ( invg `  r )  =  ( invg `  G ) )
2423fveq1d 5563 . . . . . . . 8  |-  ( r  =  G  ->  (
( invg `  r ) `  x
)  =  ( ( invg `  G
) `  x )
)
25 eqidd 2197 . . . . . . . 8  |-  ( r  =  G  ->  y  =  y )
2622, 24, 25oveq123d 5946 . . . . . . 7  |-  ( r  =  G  ->  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) )
2726eleq1d 2265 . . . . . 6  |-  ( r  =  G  ->  (
( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) )
2821, 27anbi12d 473 . . . . 5  |-  ( r  =  G  ->  (
( { x ,  y }  C_  ( Base `  r )  /\  ( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) ) )
2928opabbidv 4100 . . . 4  |-  ( r  =  G  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) } )
30 eleq2 2260 . . . . . 6  |-  ( i  =  S  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
3130anbi2d 464 . . . . 5  |-  ( i  =  S  ->  (
( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) ) )
3231opabbidv 4100 . . . 4  |-  ( i  =  S  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
33 df-eqg 13378 . . . 4  |- ~QG  =  ( r  e.  _V ,  i  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
3429, 32, 33ovmpog 6061 . . 3  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
352, 4, 19, 34syl3anc 1249 . 2  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) } )
3635, 19eqeltrd 2273 1  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {cpr 3624   {copab 4094    X. cxp 4662    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   invgcminusg 13203   ~QG cqg 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-eqg 13378
This theorem is referenced by:  quselbasg  13436  quseccl0g  13437  qusghm  13488  quscrng  14165  znval  14268  znle  14269  znbaslemnn  14271  znbas  14276  znzrhval  14279  znzrhfo  14280
  Copyright terms: Public domain W3C validator