| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgex | Unicode version | ||
| Description: The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| eqgex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. . . 4
| |
| 2 | 1 | adantr 276 |
. . 3
|
| 3 | elex 2782 |
. . . 4
| |
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | vex 2774 |
. . . . . . 7
| |
| 6 | vex 2774 |
. . . . . . 7
| |
| 7 | 5, 6 | prss 3788 |
. . . . . 6
|
| 8 | 7 | anbi1i 458 |
. . . . 5
|
| 9 | 8 | opabbii 4110 |
. . . 4
|
| 10 | basfn 12861 |
. . . . . . 7
| |
| 11 | funfvex 5592 |
. . . . . . . 8
| |
| 12 | 11 | funfni 5375 |
. . . . . . 7
|
| 13 | 10, 2, 12 | sylancr 414 |
. . . . . 6
|
| 14 | xpexg 4788 |
. . . . . 6
| |
| 15 | 13, 13, 14 | syl2anc 411 |
. . . . 5
|
| 16 | opabssxp 4748 |
. . . . . 6
| |
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | 15, 17 | ssexd 4183 |
. . . 4
|
| 19 | 9, 18 | eqeltrrid 2292 |
. . 3
|
| 20 | fveq2 5575 |
. . . . . . 7
| |
| 21 | 20 | sseq2d 3222 |
. . . . . 6
|
| 22 | fveq2 5575 |
. . . . . . . 8
| |
| 23 | fveq2 5575 |
. . . . . . . . 9
| |
| 24 | 23 | fveq1d 5577 |
. . . . . . . 8
|
| 25 | eqidd 2205 |
. . . . . . . 8
| |
| 26 | 22, 24, 25 | oveq123d 5964 |
. . . . . . 7
|
| 27 | 26 | eleq1d 2273 |
. . . . . 6
|
| 28 | 21, 27 | anbi12d 473 |
. . . . 5
|
| 29 | 28 | opabbidv 4109 |
. . . 4
|
| 30 | eleq2 2268 |
. . . . . 6
| |
| 31 | 30 | anbi2d 464 |
. . . . 5
|
| 32 | 31 | opabbidv 4109 |
. . . 4
|
| 33 | df-eqg 13479 |
. . . 4
| |
| 34 | 29, 32, 33 | ovmpog 6079 |
. . 3
|
| 35 | 2, 4, 19, 34 | syl3anc 1249 |
. 2
|
| 36 | 35, 19 | eqeltrd 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-inn 9036 df-ndx 12806 df-slot 12807 df-base 12809 df-eqg 13479 |
| This theorem is referenced by: quselbasg 13537 quseccl0g 13538 qusghm 13589 quscrng 14266 znval 14369 znle 14370 znbaslemnn 14372 znbas 14377 znzrhval 14380 znzrhfo 14381 |
| Copyright terms: Public domain | W3C validator |