ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgex Unicode version

Theorem eqgex 13672
Description: The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
eqgex  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )

Proof of Theorem eqgex
Dummy variables  i  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2788 . . . 4  |-  ( G  e.  V  ->  G  e.  _V )
21adantr 276 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  G  e.  _V )
3 elex 2788 . . . 4  |-  ( S  e.  W  ->  S  e.  _V )
43adantl 277 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  S  e.  _V )
5 vex 2779 . . . . . . 7  |-  x  e. 
_V
6 vex 2779 . . . . . . 7  |-  y  e. 
_V
75, 6prss 3800 . . . . . 6  |-  ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  <->  { x ,  y }  C_  ( Base `  G )
)
87anbi1i 458 . . . . 5  |-  ( ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
)  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
98opabbii 4127 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }
10 basfn 13005 . . . . . . 7  |-  Base  Fn  _V
11 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1211funfni 5395 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1310, 2, 12sylancr 414 . . . . . 6  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( Base `  G
)  e.  _V )
14 xpexg 4807 . . . . . 6  |-  ( ( ( Base `  G
)  e.  _V  /\  ( Base `  G )  e.  _V )  ->  (
( Base `  G )  X.  ( Base `  G
) )  e.  _V )
1513, 13, 14syl2anc 411 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( ( Base `  G
)  X.  ( Base `  G ) )  e. 
_V )
16 opabssxp 4767 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  ( ( ( invg `  G
) `  x )
( +g  `  G ) y )  e.  S
) }  C_  (
( Base `  G )  X.  ( Base `  G
) )
1716a1i 9 . . . . 5  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  C_  ( ( Base `  G
)  X.  ( Base `  G ) ) )
1815, 17ssexd 4200 . . . 4  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
199, 18eqeltrrid 2295 . . 3  |-  ( ( G  e.  V  /\  S  e.  W )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) }  e.  _V )
20 fveq2 5599 . . . . . . 7  |-  ( r  =  G  ->  ( Base `  r )  =  ( Base `  G
) )
2120sseq2d 3231 . . . . . 6  |-  ( r  =  G  ->  ( { x ,  y }  C_  ( Base `  r )  <->  { x ,  y }  C_  ( Base `  G )
) )
22 fveq2 5599 . . . . . . . 8  |-  ( r  =  G  ->  ( +g  `  r )  =  ( +g  `  G
) )
23 fveq2 5599 . . . . . . . . 9  |-  ( r  =  G  ->  ( invg `  r )  =  ( invg `  G ) )
2423fveq1d 5601 . . . . . . . 8  |-  ( r  =  G  ->  (
( invg `  r ) `  x
)  =  ( ( invg `  G
) `  x )
)
25 eqidd 2208 . . . . . . . 8  |-  ( r  =  G  ->  y  =  y )
2622, 24, 25oveq123d 5988 . . . . . . 7  |-  ( r  =  G  ->  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  =  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y ) )
2726eleq1d 2276 . . . . . 6  |-  ( r  =  G  ->  (
( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) )
2821, 27anbi12d 473 . . . . 5  |-  ( r  =  G  ->  (
( { x ,  y }  C_  ( Base `  r )  /\  ( ( ( invg `  r ) `
 x ) ( +g  `  r ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i ) ) )
2928opabbidv 4126 . . . 4  |-  ( r  =  G  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) } )
30 eleq2 2271 . . . . . 6  |-  ( i  =  S  ->  (
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i  <-> 
( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) )
3130anbi2d 464 . . . . 5  |-  ( i  =  S  ->  (
( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  i )  <->  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) ) )
3231opabbidv 4126 . . . 4  |-  ( i  =  S  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  i ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  G
)  /\  ( (
( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
33 df-eqg 13623 . . . 4  |- ~QG  =  ( r  e.  _V ,  i  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
( ( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
3429, 32, 33ovmpog 6103 . . 3  |-  ( ( G  e.  _V  /\  S  e.  _V  /\  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) }  e.  _V )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  (
( ( invg `  G ) `  x
) ( +g  `  G
) y )  e.  S ) } )
352, 4, 19, 34syl3anc 1250 . 2  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  G )  /\  ( ( ( invg `  G ) `
 x ) ( +g  `  G ) y )  e.  S
) } )
3635, 19eqeltrd 2284 1  |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   {cpr 3644   {copab 4120    X. cxp 4691    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   invgcminusg 13448   ~QG cqg 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-eqg 13623
This theorem is referenced by:  quselbasg  13681  quseccl0g  13682  qusghm  13733  quscrng  14410  znval  14513  znle  14514  znbaslemnn  14516  znbas  14521  znzrhval  14524  znzrhfo  14525
  Copyright terms: Public domain W3C validator