ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringass Unicode version

Theorem ringass 13515
Description: Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b  |-  B  =  ( Base `  R
)
ringcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringass  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y 
.x.  Z ) ) )

Proof of Theorem ringass
StepHypRef Expression
1 eqid 2193 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
21ringmgp 13501 . . . 4  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
32adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  (mulGrp `  R
)  e.  Mnd )
4 simpr1 1005 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  X  e.  B )
5 ringcl.b . . . . . 6  |-  B  =  ( Base `  R
)
61, 5mgpbasg 13425 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
76adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  B  =  ( Base `  (mulGrp `  R
) ) )
84, 7eleqtrd 2272 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  X  e.  ( Base `  (mulGrp `  R
) ) )
9 simpr2 1006 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  e.  B )
109, 7eleqtrd 2272 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  e.  ( Base `  (mulGrp `  R
) ) )
11 simpr3 1007 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  e.  B )
1211, 7eleqtrd 2272 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  e.  ( Base `  (mulGrp `  R
) ) )
13 eqid 2193 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
14 eqid 2193 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
1513, 14mndass 13008 . . 3  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  ( X  e.  ( Base `  (mulGrp `  R ) )  /\  Y  e.  ( Base `  (mulGrp `  R )
)  /\  Z  e.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( X ( +g  `  (mulGrp `  R ) ) Y ) ( +g  `  (mulGrp `  R ) ) Z )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) )
163, 8, 10, 12, 15syl13anc 1251 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  (mulGrp `  R ) ) Y ) ( +g  `  (mulGrp `  R ) ) Z )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) )
17 ringcl.t . . . . 5  |-  .x.  =  ( .r `  R )
181, 17mgpplusgg 13423 . . . 4  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1918adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
2019oveqd 5936 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  Y )  =  ( X ( +g  `  (mulGrp `  R ) ) Y ) )
21 eqidd 2194 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  =  Z )
2219, 20, 21oveq123d 5940 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( ( X ( +g  `  (mulGrp `  R )
) Y ) ( +g  `  (mulGrp `  R ) ) Z ) )
23 eqidd 2194 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  X  =  X )
2419oveqd 5936 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Y  .x.  Z )  =  ( Y ( +g  `  (mulGrp `  R ) ) Z ) )
2519, 23, 24oveq123d 5940 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .x.  Z
) )  =  ( X ( +g  `  (mulGrp `  R ) ) ( Y ( +g  `  (mulGrp `  R ) ) Z ) ) )
2616, 22, 253eqtr4d 2236 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y 
.x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   Mndcmnd 13000  mulGrpcmgp 13419   Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-ring 13497
This theorem is referenced by:  ringinvnzdiv  13549  ringmneg1  13552  ringmneg2  13553  ringressid  13562  imasring  13563  opprring  13578  dvdsrtr  13600  dvdsrmul1  13601  unitgrp  13615  dvrass  13638  dvrcan1  13639  rdivmuldivd  13643  subrginv  13736  issubrg2  13740  unitrrg  13766  sralmod  13949
  Copyright terms: Public domain W3C validator