ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgsub Unicode version

Theorem subgsub 13316
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
subgsubcl.p  |-  .-  =  ( -g `  G )
subgsub.h  |-  H  =  ( Gs  S )
subgsub.n  |-  N  =  ( -g `  H
)
Assertion
Ref Expression
subgsub  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  =  ( X N Y ) )

Proof of Theorem subgsub
StepHypRef Expression
1 subgsub.h . . . . . 6  |-  H  =  ( Gs  S )
21a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqidd 2197 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
4 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
5 subgrcl 13309 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
62, 3, 4, 5ressplusgd 12806 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
763ad2ant1 1020 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
8 eqidd 2197 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  =  X )
9 eqid 2196 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
10 eqid 2196 . . . . 5  |-  ( invg `  H )  =  ( invg `  H )
111, 9, 10subginv 13311 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  Y  e.  S )  ->  (
( invg `  G ) `  Y
)  =  ( ( invg `  H
) `  Y )
)
12113adant2 1018 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  (
( invg `  G ) `  Y
)  =  ( ( invg `  H
) `  Y )
)
137, 8, 12oveq123d 5943 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) )  =  ( X ( +g  `  H ) ( ( invg `  H ) `  Y
) ) )
14 eqid 2196 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
1514subgss 13304 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
16153ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  S  C_  ( Base `  G
) )
17 simp2 1000 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  S )
1816, 17sseldd 3184 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  ( Base `  G
) )
19 simp3 1001 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  S )
2016, 19sseldd 3184 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  ( Base `  G
) )
21 eqid 2196 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
22 subgsubcl.p . . . 4  |-  .-  =  ( -g `  G )
2314, 21, 9, 22grpsubval 13178 . . 3  |-  ( ( X  e.  ( Base `  G )  /\  Y  e.  ( Base `  G
) )  ->  ( X  .-  Y )  =  ( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) )
2418, 20, 23syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  =  ( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) )
251subgbas 13308 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
26253ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  S  =  ( Base `  H
) )
2717, 26eleqtrd 2275 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  ( Base `  H
) )
2819, 26eleqtrd 2275 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  ( Base `  H
) )
29 eqid 2196 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
30 eqid 2196 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
31 subgsub.n . . . 4  |-  N  =  ( -g `  H
)
3229, 30, 10, 31grpsubval 13178 . . 3  |-  ( ( X  e.  ( Base `  H )  /\  Y  e.  ( Base `  H
) )  ->  ( X N Y )  =  ( X ( +g  `  H ) ( ( invg `  H
) `  Y )
) )
3327, 28, 32syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X N Y )  =  ( X ( +g  `  H ) ( ( invg `  H
) `  Y )
) )
3413, 24, 333eqtr4d 2239 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  =  ( X N Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   Grpcgrp 13132   invgcminusg 13133   -gcsg 13134  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300
This theorem is referenced by:  zringsubgval  14161  zndvds  14205
  Copyright terms: Public domain W3C validator