ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgsub Unicode version

Theorem subgsub 13259
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
subgsubcl.p  |-  .-  =  ( -g `  G )
subgsub.h  |-  H  =  ( Gs  S )
subgsub.n  |-  N  =  ( -g `  H
)
Assertion
Ref Expression
subgsub  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  =  ( X N Y ) )

Proof of Theorem subgsub
StepHypRef Expression
1 subgsub.h . . . . . 6  |-  H  =  ( Gs  S )
21a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqidd 2194 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
4 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
5 subgrcl 13252 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
62, 3, 4, 5ressplusgd 12749 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
763ad2ant1 1020 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
8 eqidd 2194 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  =  X )
9 eqid 2193 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
10 eqid 2193 . . . . 5  |-  ( invg `  H )  =  ( invg `  H )
111, 9, 10subginv 13254 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  Y  e.  S )  ->  (
( invg `  G ) `  Y
)  =  ( ( invg `  H
) `  Y )
)
12113adant2 1018 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  (
( invg `  G ) `  Y
)  =  ( ( invg `  H
) `  Y )
)
137, 8, 12oveq123d 5940 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) )  =  ( X ( +g  `  H ) ( ( invg `  H ) `  Y
) ) )
14 eqid 2193 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
1514subgss 13247 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
16153ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  S  C_  ( Base `  G
) )
17 simp2 1000 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  S )
1816, 17sseldd 3181 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  ( Base `  G
) )
19 simp3 1001 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  S )
2016, 19sseldd 3181 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  ( Base `  G
) )
21 eqid 2193 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
22 subgsubcl.p . . . 4  |-  .-  =  ( -g `  G )
2314, 21, 9, 22grpsubval 13121 . . 3  |-  ( ( X  e.  ( Base `  G )  /\  Y  e.  ( Base `  G
) )  ->  ( X  .-  Y )  =  ( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) )
2418, 20, 23syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  =  ( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) )
251subgbas 13251 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
26253ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  S  =  ( Base `  H
) )
2717, 26eleqtrd 2272 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  ( Base `  H
) )
2819, 26eleqtrd 2272 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  ( Base `  H
) )
29 eqid 2193 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
30 eqid 2193 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
31 subgsub.n . . . 4  |-  N  =  ( -g `  H
)
3229, 30, 10, 31grpsubval 13121 . . 3  |-  ( ( X  e.  ( Base `  H )  /\  Y  e.  ( Base `  H
) )  ->  ( X N Y )  =  ( X ( +g  `  H ) ( ( invg `  H
) `  Y )
) )
3327, 28, 32syl2anc 411 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X N Y )  =  ( X ( +g  `  H ) ( ( invg `  H
) `  Y )
) )
3413, 24, 333eqtr4d 2236 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  =  ( X N Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622   +g cplusg 12698   Grpcgrp 13075   invgcminusg 13076   -gcsg 13077  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243
This theorem is referenced by:  zringsubgval  14104  zndvds  14148
  Copyright terms: Public domain W3C validator