ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitlinv Unicode version

Theorem unitlinv 13437
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
unitinvcl.3  |-  .x.  =  ( .r `  R )
unitinvcl.4  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
unitlinv  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
)  .x.  X )  =  .1.  )

Proof of Theorem unitlinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
3 eqidd 2190 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
) )
4 ringsrg 13360 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
52, 3, 4unitgrpbasd 13426 . . . . 5  |-  ( R  e.  Ring  ->  U  =  ( Base `  (
(mulGrp `  R )s  U
) ) )
65eleq2d 2259 . . . 4  |-  ( R  e.  Ring  ->  ( X  e.  U  <->  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
76pm5.32i 454 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  <->  ( R  e.  Ring  /\  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
8 eqid 2189 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
91, 8unitgrp 13427 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
10 eqid 2189 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
11 eqid 2189 . . . . 5  |-  ( +g  `  ( (mulGrp `  R
)s 
U ) )  =  ( +g  `  (
(mulGrp `  R )s  U
) )
12 eqid 2189 . . . . 5  |-  ( 0g
`  ( (mulGrp `  R )s  U ) )  =  ( 0g `  (
(mulGrp `  R )s  U
) )
13 eqid 2189 . . . . 5  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
1410, 11, 12, 13grplinv 12960 . . . 4  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( ( ( invg `  (
(mulGrp `  R )s  U
) ) `  X
) ( +g  `  (
(mulGrp `  R )s  U
) ) X )  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
159, 14sylan 283 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  (
(mulGrp `  R )s  U
) ) )  -> 
( ( ( invg `  ( (mulGrp `  R )s  U ) ) `  X ) ( +g  `  ( (mulGrp `  R
)s 
U ) ) X )  =  ( 0g
`  ( (mulGrp `  R )s  U ) ) )
167, 15sylbi 121 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) ( +g  `  ( (mulGrp `  R
)s 
U ) ) X )  =  ( 0g
`  ( (mulGrp `  R )s  U ) ) )
17 eqid 2189 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
18 unitinvcl.3 . . . . . 6  |-  .x.  =  ( .r `  R )
1917, 18mgpplusgg 13239 . . . . 5  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
20 basfn 12538 . . . . . . 7  |-  Base  Fn  _V
21 elex 2763 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
_V )
22 funfvex 5547 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5331 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
25 eqidd 2190 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
2625, 2, 4unitssd 13420 . . . . . 6  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
2724, 26ssexd 4158 . . . . 5  |-  ( R  e.  Ring  ->  U  e. 
_V )
2817mgpex 13240 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
293, 19, 27, 28ressplusgd 12606 . . . 4  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) ) )
30 unitinvcl.2 . . . . . . 7  |-  I  =  ( invr `  R
)
3130a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  I  =  ( invr `  R
) )
32 id 19 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Ring )
332, 3, 31, 32invrfvald 13433 . . . . 5  |-  ( R  e.  Ring  ->  I  =  ( invg `  ( (mulGrp `  R )s  U
) ) )
3433fveq1d 5532 . . . 4  |-  ( R  e.  Ring  ->  ( I `
 X )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )
35 eqidd 2190 . . . 4  |-  ( R  e.  Ring  ->  X  =  X )
3629, 34, 35oveq123d 5912 . . 3  |-  ( R  e.  Ring  ->  ( ( I `  X ) 
.x.  X )  =  ( ( ( invg `  ( (mulGrp `  R )s  U ) ) `  X ) ( +g  `  ( (mulGrp `  R
)s 
U ) ) X ) )
3736adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
)  .x.  X )  =  ( ( ( invg `  (
(mulGrp `  R )s  U
) ) `  X
) ( +g  `  (
(mulGrp `  R )s  U
) ) X ) )
38 unitinvcl.4 . . . 4  |-  .1.  =  ( 1r `  R )
391, 8, 38unitgrpid 13429 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
4039adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
4116, 37, 403eqtr4d 2232 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
)  .x.  X )  =  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752    Fn wfn 5226   ` cfv 5231  (class class class)co 5891   Basecbs 12480   ↾s cress 12481   +g cplusg 12555   .rcmulr 12556   0gc0g 12727   Grpcgrp 12911   invgcminusg 12912  mulGrpcmgp 13235   1rcur 13274   Ringcrg 13311  Unitcui 13398   invrcinvr 13431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-pre-ltirr 7941  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-tpos 6264  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-inn 8938  df-2 8996  df-3 8997  df-ndx 12483  df-slot 12484  df-base 12486  df-sets 12487  df-iress 12488  df-plusg 12568  df-mulr 12569  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-cmn 13186  df-abl 13187  df-mgp 13236  df-ur 13275  df-srg 13279  df-ring 13313  df-oppr 13379  df-dvdsr 13400  df-unit 13401  df-invr 13432
This theorem is referenced by:  dvrcan1  13451  rhmunitinv  13489  subrginv  13545  subrgunit  13547
  Copyright terms: Public domain W3C validator