| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitlinv | Unicode version | ||
| Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitinvcl.1 |
|
| unitinvcl.2 |
|
| unitinvcl.3 |
|
| unitinvcl.4 |
|
| Ref | Expression |
|---|---|
| unitlinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitinvcl.1 |
. . . . . . 7
| |
| 2 | 1 | a1i 9 |
. . . . . 6
|
| 3 | eqidd 2197 |
. . . . . 6
| |
| 4 | ringsrg 13679 |
. . . . . 6
| |
| 5 | 2, 3, 4 | unitgrpbasd 13747 |
. . . . 5
|
| 6 | 5 | eleq2d 2266 |
. . . 4
|
| 7 | 6 | pm5.32i 454 |
. . 3
|
| 8 | eqid 2196 |
. . . . 5
| |
| 9 | 1, 8 | unitgrp 13748 |
. . . 4
|
| 10 | eqid 2196 |
. . . . 5
| |
| 11 | eqid 2196 |
. . . . 5
| |
| 12 | eqid 2196 |
. . . . 5
| |
| 13 | eqid 2196 |
. . . . 5
| |
| 14 | 10, 11, 12, 13 | grplinv 13252 |
. . . 4
|
| 15 | 9, 14 | sylan 283 |
. . 3
|
| 16 | 7, 15 | sylbi 121 |
. 2
|
| 17 | eqid 2196 |
. . . . . 6
| |
| 18 | unitinvcl.3 |
. . . . . 6
| |
| 19 | 17, 18 | mgpplusgg 13556 |
. . . . 5
|
| 20 | basfn 12761 |
. . . . . . 7
| |
| 21 | elex 2774 |
. . . . . . 7
| |
| 22 | funfvex 5578 |
. . . . . . . 8
| |
| 23 | 22 | funfni 5361 |
. . . . . . 7
|
| 24 | 20, 21, 23 | sylancr 414 |
. . . . . 6
|
| 25 | eqidd 2197 |
. . . . . . 7
| |
| 26 | 25, 2, 4 | unitssd 13741 |
. . . . . 6
|
| 27 | 24, 26 | ssexd 4174 |
. . . . 5
|
| 28 | 17 | mgpex 13557 |
. . . . 5
|
| 29 | 3, 19, 27, 28 | ressplusgd 12831 |
. . . 4
|
| 30 | unitinvcl.2 |
. . . . . . 7
| |
| 31 | 30 | a1i 9 |
. . . . . 6
|
| 32 | id 19 |
. . . . . 6
| |
| 33 | 2, 3, 31, 32 | invrfvald 13754 |
. . . . 5
|
| 34 | 33 | fveq1d 5563 |
. . . 4
|
| 35 | eqidd 2197 |
. . . 4
| |
| 36 | 29, 34, 35 | oveq123d 5946 |
. . 3
|
| 37 | 36 | adantr 276 |
. 2
|
| 38 | unitinvcl.4 |
. . . 4
| |
| 39 | 1, 8, 38 | unitgrpid 13750 |
. . 3
|
| 40 | 39 | adantr 276 |
. 2
|
| 41 | 16, 37, 40 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-tpos 6312 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-cmn 13492 df-abl 13493 df-mgp 13553 df-ur 13592 df-srg 13596 df-ring 13630 df-oppr 13700 df-dvdsr 13721 df-unit 13722 df-invr 13753 |
| This theorem is referenced by: dvrcan1 13772 rhmunitinv 13810 subrginv 13869 subrgunit 13871 unitrrg 13899 |
| Copyright terms: Public domain | W3C validator |