ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidmlem Unicode version

Theorem ringidmlem 13899
Description: Lemma for ringlidm 13900 and ringridm 13901. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
ringidmlem  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )

Proof of Theorem ringidmlem
StepHypRef Expression
1 eqid 2207 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21ringmgp 13879 . . 3  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
3 simpr 110 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
4 rngidm.b . . . . . 6  |-  B  =  ( Base `  R
)
51, 4mgpbasg 13803 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
65adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
73, 6eleqtrd 2286 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
8 eqid 2207 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
9 eqid 2207 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
10 eqid 2207 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
118, 9, 10mndlrid 13381 . . 3  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  X  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
122, 7, 11syl2an2r 595 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
13 rngidm.t . . . . . . 7  |-  .x.  =  ( .r `  R )
141, 13mgpplusgg 13801 . . . . . 6  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1514adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
16 rngidm.u . . . . . . 7  |-  .1.  =  ( 1r `  R )
171, 16ringidvalg 13838 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
1817adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
19 eqidd 2208 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  =  X )
2015, 18, 19oveq123d 5988 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X ) )
2120eqeq1d 2216 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  <->  ( ( 0g `  (mulGrp `  R
) ) ( +g  `  (mulGrp `  R )
) X )  =  X ) )
2215, 19, 18oveq123d 5988 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .1.  )  =  ( X ( +g  `  (mulGrp `  R )
) ( 0g `  (mulGrp `  R ) ) ) )
2322eqeq1d 2216 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .1.  )  =  X  <->  ( X
( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
2421, 23anbi12d 473 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X
)  <->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2512, 24mpbird 167 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   0gc0g 13203   Mndcmnd 13363  mulGrpcmgp 13797   1rcur 13836   Ringcrg 13873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mgp 13798  df-ur 13837  df-ring 13875
This theorem is referenced by:  ringlidm  13900  ringridm  13901  ringid  13903  subrg1  14108
  Copyright terms: Public domain W3C validator