| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidmlem | Unicode version | ||
| Description: Lemma for ringlidm 13986 and ringridm 13987. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| rngidm.b |
|
| rngidm.t |
|
| rngidm.u |
|
| Ref | Expression |
|---|---|
| ringidmlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . . 4
| |
| 2 | 1 | ringmgp 13965 |
. . 3
|
| 3 | simpr 110 |
. . . 4
| |
| 4 | rngidm.b |
. . . . . 6
| |
| 5 | 1, 4 | mgpbasg 13889 |
. . . . 5
|
| 6 | 5 | adantr 276 |
. . . 4
|
| 7 | 3, 6 | eleqtrd 2308 |
. . 3
|
| 8 | eqid 2229 |
. . . 4
| |
| 9 | eqid 2229 |
. . . 4
| |
| 10 | eqid 2229 |
. . . 4
| |
| 11 | 8, 9, 10 | mndlrid 13467 |
. . 3
|
| 12 | 2, 7, 11 | syl2an2r 597 |
. 2
|
| 13 | rngidm.t |
. . . . . . 7
| |
| 14 | 1, 13 | mgpplusgg 13887 |
. . . . . 6
|
| 15 | 14 | adantr 276 |
. . . . 5
|
| 16 | rngidm.u |
. . . . . . 7
| |
| 17 | 1, 16 | ringidvalg 13924 |
. . . . . 6
|
| 18 | 17 | adantr 276 |
. . . . 5
|
| 19 | eqidd 2230 |
. . . . 5
| |
| 20 | 15, 18, 19 | oveq123d 6022 |
. . . 4
|
| 21 | 20 | eqeq1d 2238 |
. . 3
|
| 22 | 15, 19, 18 | oveq123d 6022 |
. . . 4
|
| 23 | 22 | eqeq1d 2238 |
. . 3
|
| 24 | 21, 23 | anbi12d 473 |
. 2
|
| 25 | 12, 24 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-mgp 13884 df-ur 13923 df-ring 13961 |
| This theorem is referenced by: ringlidm 13986 ringridm 13987 ringid 13989 subrg1 14195 |
| Copyright terms: Public domain | W3C validator |