ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidmlem Unicode version

Theorem ringidmlem 13656
Description: Lemma for ringlidm 13657 and ringridm 13658. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
ringidmlem  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )

Proof of Theorem ringidmlem
StepHypRef Expression
1 eqid 2196 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21ringmgp 13636 . . 3  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
3 simpr 110 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
4 rngidm.b . . . . . 6  |-  B  =  ( Base `  R
)
51, 4mgpbasg 13560 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
65adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  B  =  ( Base `  (mulGrp `  R ) ) )
73, 6eleqtrd 2275 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
8 eqid 2196 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
9 eqid 2196 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
10 eqid 2196 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
118, 9, 10mndlrid 13138 . . 3  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  X  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
122, 7, 11syl2an2r 595 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
13 rngidm.t . . . . . . 7  |-  .x.  =  ( .r `  R )
141, 13mgpplusgg 13558 . . . . . 6  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1514adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
16 rngidm.u . . . . . . 7  |-  .1.  =  ( 1r `  R )
171, 16ringidvalg 13595 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
1817adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .1.  =  ( 0g `  (mulGrp `  R ) ) )
19 eqidd 2197 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  =  X )
2015, 18, 19oveq123d 5946 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X ) )
2120eqeq1d 2205 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  <->  ( ( 0g `  (mulGrp `  R
) ) ( +g  `  (mulGrp `  R )
) X )  =  X ) )
2215, 19, 18oveq123d 5946 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .1.  )  =  ( X ( +g  `  (mulGrp `  R )
) ( 0g `  (mulGrp `  R ) ) ) )
2322eqeq1d 2205 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .1.  )  =  X  <->  ( X
( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
2421, 23anbi12d 473 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X
)  <->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2512, 24mpbird 167 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12705   +g cplusg 12782   .rcmulr 12783   0gc0g 12960   Mndcmnd 13120  mulGrpcmgp 13554   1rcur 13593   Ringcrg 13630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mgp 13555  df-ur 13594  df-ring 13632
This theorem is referenced by:  ringlidm  13657  ringridm  13658  ringid  13660  subrg1  13865
  Copyright terms: Public domain W3C validator