ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitrinv Unicode version

Theorem unitrinv 13683
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
unitinvcl.3  |-  .x.  =  ( .r `  R )
unitinvcl.4  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
unitrinv  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )

Proof of Theorem unitrinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
3 eqidd 2197 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
) )
4 ringsrg 13603 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
52, 3, 4unitgrpbasd 13671 . . . . 5  |-  ( R  e.  Ring  ->  U  =  ( Base `  (
(mulGrp `  R )s  U
) ) )
65eleq2d 2266 . . . 4  |-  ( R  e.  Ring  ->  ( X  e.  U  <->  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
76pm5.32i 454 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  <->  ( R  e.  Ring  /\  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
8 eqid 2196 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
91, 8unitgrp 13672 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
10 eqid 2196 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
11 eqid 2196 . . . . 5  |-  ( +g  `  ( (mulGrp `  R
)s 
U ) )  =  ( +g  `  (
(mulGrp `  R )s  U
) )
12 eqid 2196 . . . . 5  |-  ( 0g
`  ( (mulGrp `  R )s  U ) )  =  ( 0g `  (
(mulGrp `  R )s  U
) )
13 eqid 2196 . . . . 5  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
1410, 11, 12, 13grprinv 13183 . . . 4  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( X ( +g  `  ( (mulGrp `  R )s  U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
159, 14sylan 283 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  (
(mulGrp `  R )s  U
) ) )  -> 
( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
167, 15sylbi 121 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
17 eqid 2196 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
18 unitinvcl.3 . . . . . 6  |-  .x.  =  ( .r `  R )
1917, 18mgpplusgg 13480 . . . . 5  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
20 basfn 12736 . . . . . . 7  |-  Base  Fn  _V
21 elex 2774 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
_V )
22 funfvex 5575 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5358 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
25 eqidd 2197 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
2625, 2, 4unitssd 13665 . . . . . 6  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
2724, 26ssexd 4173 . . . . 5  |-  ( R  e.  Ring  ->  U  e. 
_V )
2817mgpex 13481 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
293, 19, 27, 28ressplusgd 12806 . . . 4  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) ) )
30 eqidd 2197 . . . 4  |-  ( R  e.  Ring  ->  X  =  X )
31 unitinvcl.2 . . . . . . 7  |-  I  =  ( invr `  R
)
3231a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  I  =  ( invr `  R
) )
33 id 19 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Ring )
342, 3, 32, 33invrfvald 13678 . . . . 5  |-  ( R  e.  Ring  ->  I  =  ( invg `  ( (mulGrp `  R )s  U
) ) )
3534fveq1d 5560 . . . 4  |-  ( R  e.  Ring  ->  ( I `
 X )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )
3629, 30, 35oveq123d 5943 . . 3  |-  ( R  e.  Ring  ->  ( X 
.x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
3736adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
38 unitinvcl.4 . . . 4  |-  .1.  =  ( 1r `  R )
391, 8, 38unitgrpid 13674 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
4039adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
4116, 37, 403eqtr4d 2239 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   .rcmulr 12756   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133  mulGrpcmgp 13476   1rcur 13515   Ringcrg 13552  Unitcui 13643   invrcinvr 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-invr 13677
This theorem is referenced by:  1rinv  13684  0unit  13685  dvrid  13693  subrguss  13792  subrginv  13793  subrgunit  13795
  Copyright terms: Public domain W3C validator