ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitrinv Unicode version

Theorem unitrinv 14085
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
unitinvcl.3  |-  .x.  =  ( .r `  R )
unitinvcl.4  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
unitrinv  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )

Proof of Theorem unitrinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
3 eqidd 2230 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
) )
4 ringsrg 14005 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
52, 3, 4unitgrpbasd 14073 . . . . 5  |-  ( R  e.  Ring  ->  U  =  ( Base `  (
(mulGrp `  R )s  U
) ) )
65eleq2d 2299 . . . 4  |-  ( R  e.  Ring  ->  ( X  e.  U  <->  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
76pm5.32i 454 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  <->  ( R  e.  Ring  /\  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
8 eqid 2229 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
91, 8unitgrp 14074 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
10 eqid 2229 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
11 eqid 2229 . . . . 5  |-  ( +g  `  ( (mulGrp `  R
)s 
U ) )  =  ( +g  `  (
(mulGrp `  R )s  U
) )
12 eqid 2229 . . . . 5  |-  ( 0g
`  ( (mulGrp `  R )s  U ) )  =  ( 0g `  (
(mulGrp `  R )s  U
) )
13 eqid 2229 . . . . 5  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
1410, 11, 12, 13grprinv 13579 . . . 4  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( X ( +g  `  ( (mulGrp `  R )s  U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
159, 14sylan 283 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  (
(mulGrp `  R )s  U
) ) )  -> 
( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
167, 15sylbi 121 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
17 eqid 2229 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
18 unitinvcl.3 . . . . . 6  |-  .x.  =  ( .r `  R )
1917, 18mgpplusgg 13882 . . . . 5  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
20 basfn 13086 . . . . . . 7  |-  Base  Fn  _V
21 elex 2811 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
_V )
22 funfvex 5643 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5422 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
25 eqidd 2230 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
2625, 2, 4unitssd 14067 . . . . . 6  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
2724, 26ssexd 4223 . . . . 5  |-  ( R  e.  Ring  ->  U  e. 
_V )
2817mgpex 13883 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
293, 19, 27, 28ressplusgd 13157 . . . 4  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) ) )
30 eqidd 2230 . . . 4  |-  ( R  e.  Ring  ->  X  =  X )
31 unitinvcl.2 . . . . . . 7  |-  I  =  ( invr `  R
)
3231a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  I  =  ( invr `  R
) )
33 id 19 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Ring )
342, 3, 32, 33invrfvald 14080 . . . . 5  |-  ( R  e.  Ring  ->  I  =  ( invg `  ( (mulGrp `  R )s  U
) ) )
3534fveq1d 5628 . . . 4  |-  ( R  e.  Ring  ->  ( I `
 X )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )
3629, 30, 35oveq123d 6021 . . 3  |-  ( R  e.  Ring  ->  ( X 
.x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
3736adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
38 unitinvcl.4 . . . 4  |-  .1.  =  ( 1r `  R )
391, 8, 38unitgrpid 14076 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
4039adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
4116, 37, 403eqtr4d 2272 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   .rcmulr 13106   0gc0g 13284   Grpcgrp 13528   invgcminusg 13529  mulGrpcmgp 13878   1rcur 13917   Ringcrg 13954  Unitcui 14045   invrcinvr 14078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-invr 14079
This theorem is referenced by:  1rinv  14086  0unit  14087  dvrid  14095  subrguss  14194  subrginv  14195  subrgunit  14197
  Copyright terms: Public domain W3C validator