ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitrinv Unicode version

Theorem unitrinv 13761
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
unitinvcl.3  |-  .x.  =  ( .r `  R )
unitinvcl.4  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
unitrinv  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )

Proof of Theorem unitrinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
3 eqidd 2197 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
) )
4 ringsrg 13681 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
52, 3, 4unitgrpbasd 13749 . . . . 5  |-  ( R  e.  Ring  ->  U  =  ( Base `  (
(mulGrp `  R )s  U
) ) )
65eleq2d 2266 . . . 4  |-  ( R  e.  Ring  ->  ( X  e.  U  <->  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
76pm5.32i 454 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  <->  ( R  e.  Ring  /\  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
8 eqid 2196 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
91, 8unitgrp 13750 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
10 eqid 2196 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
11 eqid 2196 . . . . 5  |-  ( +g  `  ( (mulGrp `  R
)s 
U ) )  =  ( +g  `  (
(mulGrp `  R )s  U
) )
12 eqid 2196 . . . . 5  |-  ( 0g
`  ( (mulGrp `  R )s  U ) )  =  ( 0g `  (
(mulGrp `  R )s  U
) )
13 eqid 2196 . . . . 5  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
1410, 11, 12, 13grprinv 13255 . . . 4  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( X ( +g  `  ( (mulGrp `  R )s  U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
159, 14sylan 283 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  (
(mulGrp `  R )s  U
) ) )  -> 
( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
167, 15sylbi 121 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
17 eqid 2196 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
18 unitinvcl.3 . . . . . 6  |-  .x.  =  ( .r `  R )
1917, 18mgpplusgg 13558 . . . . 5  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
20 basfn 12763 . . . . . . 7  |-  Base  Fn  _V
21 elex 2774 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
_V )
22 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5361 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
25 eqidd 2197 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
2625, 2, 4unitssd 13743 . . . . . 6  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
2724, 26ssexd 4174 . . . . 5  |-  ( R  e.  Ring  ->  U  e. 
_V )
2817mgpex 13559 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
293, 19, 27, 28ressplusgd 12833 . . . 4  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) ) )
30 eqidd 2197 . . . 4  |-  ( R  e.  Ring  ->  X  =  X )
31 unitinvcl.2 . . . . . . 7  |-  I  =  ( invr `  R
)
3231a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  I  =  ( invr `  R
) )
33 id 19 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Ring )
342, 3, 32, 33invrfvald 13756 . . . . 5  |-  ( R  e.  Ring  ->  I  =  ( invg `  ( (mulGrp `  R )s  U
) ) )
3534fveq1d 5563 . . . 4  |-  ( R  e.  Ring  ->  ( I `
 X )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )
3629, 30, 35oveq123d 5946 . . 3  |-  ( R  e.  Ring  ->  ( X 
.x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
3736adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
38 unitinvcl.4 . . . 4  |-  .1.  =  ( 1r `  R )
391, 8, 38unitgrpid 13752 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
4039adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
4116, 37, 403eqtr4d 2239 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12705   ↾s cress 12706   +g cplusg 12782   .rcmulr 12783   0gc0g 12960   Grpcgrp 13204   invgcminusg 13205  mulGrpcmgp 13554   1rcur 13593   Ringcrg 13630  Unitcui 13721   invrcinvr 13754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-cmn 13494  df-abl 13495  df-mgp 13555  df-ur 13594  df-srg 13598  df-ring 13632  df-oppr 13702  df-dvdsr 13723  df-unit 13724  df-invr 13755
This theorem is referenced by:  1rinv  13762  0unit  13763  dvrid  13771  subrguss  13870  subrginv  13871  subrgunit  13873
  Copyright terms: Public domain W3C validator