ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitrinv Unicode version

Theorem unitrinv 13964
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
unitinvcl.3  |-  .x.  =  ( .r `  R )
unitinvcl.4  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
unitrinv  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )

Proof of Theorem unitrinv
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
3 eqidd 2207 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
) )
4 ringsrg 13884 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
52, 3, 4unitgrpbasd 13952 . . . . 5  |-  ( R  e.  Ring  ->  U  =  ( Base `  (
(mulGrp `  R )s  U
) ) )
65eleq2d 2276 . . . 4  |-  ( R  e.  Ring  ->  ( X  e.  U  <->  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
76pm5.32i 454 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  <->  ( R  e.  Ring  /\  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
8 eqid 2206 . . . . 5  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
91, 8unitgrp 13953 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
10 eqid 2206 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
11 eqid 2206 . . . . 5  |-  ( +g  `  ( (mulGrp `  R
)s 
U ) )  =  ( +g  `  (
(mulGrp `  R )s  U
) )
12 eqid 2206 . . . . 5  |-  ( 0g
`  ( (mulGrp `  R )s  U ) )  =  ( 0g `  (
(mulGrp `  R )s  U
) )
13 eqid 2206 . . . . 5  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
1410, 11, 12, 13grprinv 13458 . . . 4  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( X ( +g  `  ( (mulGrp `  R )s  U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
159, 14sylan 283 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  (
(mulGrp `  R )s  U
) ) )  -> 
( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
167, 15sylbi 121 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( +g  `  (
(mulGrp `  R )s  U
) ) ( ( invg `  (
(mulGrp `  R )s  U
) ) `  X
) )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
17 eqid 2206 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
18 unitinvcl.3 . . . . . 6  |-  .x.  =  ( .r `  R )
1917, 18mgpplusgg 13761 . . . . 5  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
20 basfn 12965 . . . . . . 7  |-  Base  Fn  _V
21 elex 2785 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
_V )
22 funfvex 5606 . . . . . . . 8  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
2322funfni 5385 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
2420, 21, 23sylancr 414 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  e.  _V )
25 eqidd 2207 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  R )
)
2625, 2, 4unitssd 13946 . . . . . 6  |-  ( R  e.  Ring  ->  U  C_  ( Base `  R )
)
2724, 26ssexd 4192 . . . . 5  |-  ( R  e.  Ring  ->  U  e. 
_V )
2817mgpex 13762 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  _V )
293, 19, 27, 28ressplusgd 13036 . . . 4  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) ) )
30 eqidd 2207 . . . 4  |-  ( R  e.  Ring  ->  X  =  X )
31 unitinvcl.2 . . . . . . 7  |-  I  =  ( invr `  R
)
3231a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  I  =  ( invr `  R
) )
33 id 19 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Ring )
342, 3, 32, 33invrfvald 13959 . . . . 5  |-  ( R  e.  Ring  ->  I  =  ( invg `  ( (mulGrp `  R )s  U
) ) )
3534fveq1d 5591 . . . 4  |-  ( R  e.  Ring  ->  ( I `
 X )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )
3629, 30, 35oveq123d 5978 . . 3  |-  ( R  e.  Ring  ->  ( X 
.x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
3736adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  ( X ( +g  `  ( (mulGrp `  R
)s 
U ) ) ( ( invg `  ( (mulGrp `  R )s  U
) ) `  X
) ) )
38 unitinvcl.4 . . . 4  |-  .1.  =  ( 1r `  R )
391, 8, 38unitgrpid 13955 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
4039adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
4116, 37, 403eqtr4d 2249 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  .x.  ( I `  X ) )  =  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773    Fn wfn 5275   ` cfv 5280  (class class class)co 5957   Basecbs 12907   ↾s cress 12908   +g cplusg 12984   .rcmulr 12985   0gc0g 13163   Grpcgrp 13407   invgcminusg 13408  mulGrpcmgp 13757   1rcur 13796   Ringcrg 13833  Unitcui 13924   invrcinvr 13957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-tpos 6344  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-cmn 13697  df-abl 13698  df-mgp 13758  df-ur 13797  df-srg 13801  df-ring 13835  df-oppr 13905  df-dvdsr 13926  df-unit 13927  df-invr 13958
This theorem is referenced by:  1rinv  13965  0unit  13966  dvrid  13974  subrguss  14073  subrginv  14074  subrgunit  14076
  Copyright terms: Public domain W3C validator