ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgidmlem Unicode version

Theorem srgidmlem 13114
Description: Lemma for srglidm 13115 and srgridm 13116. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgidm.b  |-  B  =  ( Base `  R
)
srgidm.t  |-  .x.  =  ( .r `  R )
srgidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
srgidmlem  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )

Proof of Theorem srgidmlem
StepHypRef Expression
1 eqid 2177 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13104 . . 3  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 srgidm.b . . . . . 6  |-  B  =  ( Base `  R
)
41, 3mgpbasg 13089 . . . . 5  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
54eleq2d 2247 . . . 4  |-  ( R  e. SRing  ->  ( X  e.  B  <->  X  e.  ( Base `  (mulGrp `  R
) ) ) )
65biimpa 296 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
7 eqid 2177 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
8 eqid 2177 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
9 eqid 2177 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
107, 8, 9mndlrid 12789 . . 3  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  X  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
112, 6, 10syl2an2r 595 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
12 srgidm.t . . . . . . 7  |-  .x.  =  ( .r `  R )
131, 12mgpplusgg 13087 . . . . . 6  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
14 srgidm.u . . . . . . 7  |-  .1.  =  ( 1r `  R )
151, 14ringidvalg 13097 . . . . . 6  |-  ( R  e. SRing  ->  .1.  =  ( 0g `  (mulGrp `  R
) ) )
16 eqidd 2178 . . . . . 6  |-  ( R  e. SRing  ->  X  =  X )
1713, 15, 16oveq123d 5895 . . . . 5  |-  ( R  e. SRing  ->  (  .1.  .x.  X )  =  ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X ) )
1817eqeq1d 2186 . . . 4  |-  ( R  e. SRing  ->  ( (  .1. 
.x.  X )  =  X  <->  ( ( 0g
`  (mulGrp `  R )
) ( +g  `  (mulGrp `  R ) ) X )  =  X ) )
1913, 16, 15oveq123d 5895 . . . . 5  |-  ( R  e. SRing  ->  ( X  .x.  .1.  )  =  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) ) )
2019eqeq1d 2186 . . . 4  |-  ( R  e. SRing  ->  ( ( X 
.x.  .1.  )  =  X 
<->  ( X ( +g  `  (mulGrp `  R )
) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
2118, 20anbi12d 473 . . 3  |-  ( R  e. SRing  ->  ( ( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X )  <->  ( (
( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2221adantr 276 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X
)  <->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2311, 22mpbird 167 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   ` cfv 5216  (class class class)co 5874   Basecbs 12456   +g cplusg 12530   .rcmulr 12531   0gc0g 12695   Mndcmnd 12771  mulGrpcmgp 13083   1rcur 13095  SRingcsrg 13099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-mgp 13084  df-ur 13096  df-srg 13100
This theorem is referenced by:  srglidm  13115  srgridm  13116
  Copyright terms: Public domain W3C validator