ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgidmlem Unicode version

Theorem srgidmlem 13941
Description: Lemma for srglidm 13942 and srgridm 13943. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgidm.b  |-  B  =  ( Base `  R
)
srgidm.t  |-  .x.  =  ( .r `  R )
srgidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
srgidmlem  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )

Proof of Theorem srgidmlem
StepHypRef Expression
1 eqid 2229 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13931 . . 3  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 srgidm.b . . . . . 6  |-  B  =  ( Base `  R
)
41, 3mgpbasg 13889 . . . . 5  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
54eleq2d 2299 . . . 4  |-  ( R  e. SRing  ->  ( X  e.  B  <->  X  e.  ( Base `  (mulGrp `  R
) ) ) )
65biimpa 296 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
7 eqid 2229 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
8 eqid 2229 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
9 eqid 2229 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
107, 8, 9mndlrid 13467 . . 3  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  X  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
112, 6, 10syl2an2r 597 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
12 srgidm.t . . . . . . 7  |-  .x.  =  ( .r `  R )
131, 12mgpplusgg 13887 . . . . . 6  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
14 srgidm.u . . . . . . 7  |-  .1.  =  ( 1r `  R )
151, 14ringidvalg 13924 . . . . . 6  |-  ( R  e. SRing  ->  .1.  =  ( 0g `  (mulGrp `  R
) ) )
16 eqidd 2230 . . . . . 6  |-  ( R  e. SRing  ->  X  =  X )
1713, 15, 16oveq123d 6022 . . . . 5  |-  ( R  e. SRing  ->  (  .1.  .x.  X )  =  ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X ) )
1817eqeq1d 2238 . . . 4  |-  ( R  e. SRing  ->  ( (  .1. 
.x.  X )  =  X  <->  ( ( 0g
`  (mulGrp `  R )
) ( +g  `  (mulGrp `  R ) ) X )  =  X ) )
1913, 16, 15oveq123d 6022 . . . . 5  |-  ( R  e. SRing  ->  ( X  .x.  .1.  )  =  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) ) )
2019eqeq1d 2238 . . . 4  |-  ( R  e. SRing  ->  ( ( X 
.x.  .1.  )  =  X 
<->  ( X ( +g  `  (mulGrp `  R )
) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
2118, 20anbi12d 473 . . 3  |-  ( R  e. SRing  ->  ( ( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X )  <->  ( (
( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2221adantr 276 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X
)  <->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2311, 22mpbird 167 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   0gc0g 13289   Mndcmnd 13449  mulGrpcmgp 13883   1rcur 13922  SRingcsrg 13926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mgp 13884  df-ur 13923  df-srg 13927
This theorem is referenced by:  srglidm  13942  srgridm  13943
  Copyright terms: Public domain W3C validator