ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgidmlem Unicode version

Theorem srgidmlem 13477
Description: Lemma for srglidm 13478 and srgridm 13479. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgidm.b  |-  B  =  ( Base `  R
)
srgidm.t  |-  .x.  =  ( .r `  R )
srgidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
srgidmlem  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )

Proof of Theorem srgidmlem
StepHypRef Expression
1 eqid 2193 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21srgmgp 13467 . . 3  |-  ( R  e. SRing  ->  (mulGrp `  R )  e.  Mnd )
3 srgidm.b . . . . . 6  |-  B  =  ( Base `  R
)
41, 3mgpbasg 13425 . . . . 5  |-  ( R  e. SRing  ->  B  =  (
Base `  (mulGrp `  R
) ) )
54eleq2d 2263 . . . 4  |-  ( R  e. SRing  ->  ( X  e.  B  <->  X  e.  ( Base `  (mulGrp `  R
) ) ) )
65biimpa 296 . . 3  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  X  e.  ( Base `  (mulGrp `  R ) ) )
7 eqid 2193 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
8 eqid 2193 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
9 eqid 2193 . . . 4  |-  ( 0g
`  (mulGrp `  R )
)  =  ( 0g
`  (mulGrp `  R )
)
107, 8, 9mndlrid 13018 . . 3  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  X  e.  ( Base `  (mulGrp `  R ) ) )  ->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
112, 6, 10syl2an2r 595 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
12 srgidm.t . . . . . . 7  |-  .x.  =  ( .r `  R )
131, 12mgpplusgg 13423 . . . . . 6  |-  ( R  e. SRing  ->  .x.  =  ( +g  `  (mulGrp `  R
) ) )
14 srgidm.u . . . . . . 7  |-  .1.  =  ( 1r `  R )
151, 14ringidvalg 13460 . . . . . 6  |-  ( R  e. SRing  ->  .1.  =  ( 0g `  (mulGrp `  R
) ) )
16 eqidd 2194 . . . . . 6  |-  ( R  e. SRing  ->  X  =  X )
1713, 15, 16oveq123d 5940 . . . . 5  |-  ( R  e. SRing  ->  (  .1.  .x.  X )  =  ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X ) )
1817eqeq1d 2202 . . . 4  |-  ( R  e. SRing  ->  ( (  .1. 
.x.  X )  =  X  <->  ( ( 0g
`  (mulGrp `  R )
) ( +g  `  (mulGrp `  R ) ) X )  =  X ) )
1913, 16, 15oveq123d 5940 . . . . 5  |-  ( R  e. SRing  ->  ( X  .x.  .1.  )  =  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) ) )
2019eqeq1d 2202 . . . 4  |-  ( R  e. SRing  ->  ( ( X 
.x.  .1.  )  =  X 
<->  ( X ( +g  `  (mulGrp `  R )
) ( 0g `  (mulGrp `  R ) ) )  =  X ) )
2118, 20anbi12d 473 . . 3  |-  ( R  e. SRing  ->  ( ( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X )  <->  ( (
( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2221adantr 276 . 2  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
( (  .1.  .x.  X )  =  X  /\  ( X  .x.  .1.  )  =  X
)  <->  ( ( ( 0g `  (mulGrp `  R ) ) ( +g  `  (mulGrp `  R ) ) X )  =  X  /\  ( X ( +g  `  (mulGrp `  R ) ) ( 0g `  (mulGrp `  R ) ) )  =  X ) ) )
2311, 22mpbird 167 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  (
(  .1.  .x.  X
)  =  X  /\  ( X  .x.  .1.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   0gc0g 12870   Mndcmnd 13000  mulGrpcmgp 13419   1rcur 13458  SRingcsrg 13462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-ur 13459  df-srg 13463
This theorem is referenced by:  srglidm  13478  srgridm  13479
  Copyright terms: Public domain W3C validator