Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > php5fin | GIF version |
Description: A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.) |
Ref | Expression |
---|---|
php5fin | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6719 | . . . 4 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | 2 | adantr 274 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
4 | php5 6816 | . . . 4 ⊢ (𝑛 ∈ ω → ¬ 𝑛 ≈ suc 𝑛) | |
5 | 4 | ad2antrl 482 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝑛 ≈ suc 𝑛) |
6 | enen1 6798 | . . . . 5 ⊢ (𝐴 ≈ 𝑛 → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵}))) | |
7 | 6 | ad2antll 483 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵}))) |
8 | fiunsnnn 6839 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛) | |
9 | enen2 6799 | . . . . 5 ⊢ ((𝐴 ∪ {𝐵}) ≈ suc 𝑛 → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) |
11 | 7, 10 | bitrd 187 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) |
12 | 5, 11 | mtbird 663 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
13 | 3, 12 | rexlimddv 2586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2135 ∃wrex 2443 Vcvv 2722 ∖ cdif 3109 ∪ cun 3110 {csn 3571 class class class wbr 3977 suc csuc 4338 ωcom 4562 ≈ cen 6696 Fincfn 6698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-br 3978 df-opab 4039 df-tr 4076 df-id 4266 df-iord 4339 df-on 4341 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-1o 6376 df-er 6493 df-en 6699 df-fin 6701 |
This theorem is referenced by: unsnfidcex 6877 unsnfidcel 6878 |
Copyright terms: Public domain | W3C validator |