![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > php5fin | GIF version |
Description: A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.) |
Ref | Expression |
---|---|
php5fin | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6815 | . . . 4 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
4 | php5 6914 | . . . 4 ⊢ (𝑛 ∈ ω → ¬ 𝑛 ≈ suc 𝑛) | |
5 | 4 | ad2antrl 490 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝑛 ≈ suc 𝑛) |
6 | enen1 6896 | . . . . 5 ⊢ (𝐴 ≈ 𝑛 → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵}))) | |
7 | 6 | ad2antll 491 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵}))) |
8 | fiunsnnn 6937 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛) | |
9 | enen2 6897 | . . . . 5 ⊢ ((𝐴 ∪ {𝐵}) ≈ suc 𝑛 → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) |
11 | 7, 10 | bitrd 188 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛)) |
12 | 5, 11 | mtbird 674 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
13 | 3, 12 | rexlimddv 2616 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∃wrex 2473 Vcvv 2760 ∖ cdif 3150 ∪ cun 3151 {csn 3618 class class class wbr 4029 suc csuc 4396 ωcom 4622 ≈ cen 6792 Fincfn 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1o 6469 df-er 6587 df-en 6795 df-fin 6797 |
This theorem is referenced by: unsnfidcex 6976 unsnfidcel 6977 |
Copyright terms: Public domain | W3C validator |