ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5fin GIF version

Theorem php5fin 7000
Description: A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
php5fin ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))

Proof of Theorem php5fin
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 isfi 6870 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 276 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ∃𝑛 ∈ ω 𝐴𝑛)
4 php5 6975 . . . 4 (𝑛 ∈ ω → ¬ 𝑛 ≈ suc 𝑛)
54ad2antrl 490 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝑛 ≈ suc 𝑛)
6 enen1 6957 . . . . 5 (𝐴𝑛 → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵})))
76ad2antll 491 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ (𝐴 ∪ {𝐵})))
8 fiunsnnn 6999 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑛)
9 enen2 6958 . . . . 5 ((𝐴 ∪ {𝐵}) ≈ suc 𝑛 → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛))
108, 9syl 14 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝑛 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛))
117, 10bitrd 188 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴 ≈ (𝐴 ∪ {𝐵}) ↔ 𝑛 ≈ suc 𝑛))
125, 11mtbird 675 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
133, 12rexlimddv 2629 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2177  wrex 2486  Vcvv 2773  cdif 3167  cun 3168  {csn 3638   class class class wbr 4054  suc csuc 4425  ωcom 4651  cen 6843  Fincfn 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1o 6520  df-er 6638  df-en 6846  df-fin 6848
This theorem is referenced by:  unsnfidcex  7038  unsnfidcel  7039
  Copyright terms: Public domain W3C validator