ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisbth Unicode version

Theorem fisbth 6944
Description: Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
Assertion
Ref Expression
fisbth  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)

Proof of Theorem fisbth
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6820 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32ad2antrr 488 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6820 . . . . 5  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 120 . . . 4  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
65ad3antlr 493 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m
)
7 simplrr 536 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  n )
87ensymd 6842 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  ~~  A )
9 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~<_  B )
109ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~<_  B )
11 endomtr 6849 . . . . . . . . 9  |-  ( ( n  ~~  A  /\  A  ~<_  B )  ->  n  ~<_  B )
128, 10, 11syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  ~<_  B )
13 simprr 531 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  ~~  m )
14 domentr 6850 . . . . . . . 8  |-  ( ( n  ~<_  B  /\  B  ~~  m )  ->  n  ~<_  m )
1512, 13, 14syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  ~<_  m )
16 simplrl 535 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  om )
17 simprl 529 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  om )
18 nndomo 6925 . . . . . . . 8  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~<_  m  <->  n  C_  m
) )
1916, 17, 18syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  ~<_  m  <->  n  C_  m
) )
2015, 19mpbid 147 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  C_  m )
2113ensymd 6842 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  ~~  B )
22 simprr 531 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  B  ~<_  A )
2322ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  ~<_  A )
24 endomtr 6849 . . . . . . . . 9  |-  ( ( m  ~~  B  /\  B  ~<_  A )  ->  m  ~<_  A )
2521, 23, 24syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  ~<_  A )
26 domentr 6850 . . . . . . . 8  |-  ( ( m  ~<_  A  /\  A  ~~  n )  ->  m  ~<_  n )
2725, 7, 26syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  ~<_  n )
28 nndomo 6925 . . . . . . . 8  |-  ( ( m  e.  om  /\  n  e.  om )  ->  ( m  ~<_  n  <->  m  C_  n
) )
2917, 16, 28syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( m  ~<_  n  <->  m  C_  n
) )
3027, 29mpbid 147 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  C_  n )
3120, 30eqssd 3200 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  =  m )
327, 31breqtrd 4059 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  m )
33 entr 6843 . . . 4  |-  ( ( A  ~~  m  /\  m  ~~  B )  ->  A  ~~  B )
3432, 21, 33syl2anc 411 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  B )
356, 34rexlimddv 2619 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  B )
363, 35rexlimddv 2619 1  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   E.wrex 2476    C_ wss 3157   class class class wbr 4033   omcom 4626    ~~ cen 6797    ~<_ cdom 6798   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator