| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fisbth | Unicode version | ||
| Description: Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.) |
| Ref | Expression |
|---|---|
| fisbth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6912 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | ad2antrr 488 |
. 2
|
| 4 | isfi 6912 |
. . . . 5
| |
| 5 | 4 | biimpi 120 |
. . . 4
|
| 6 | 5 | ad3antlr 493 |
. . 3
|
| 7 | simplrr 536 |
. . . . 5
| |
| 8 | 7 | ensymd 6935 |
. . . . . . . . 9
|
| 9 | simprl 529 |
. . . . . . . . . 10
| |
| 10 | 9 | ad2antrr 488 |
. . . . . . . . 9
|
| 11 | endomtr 6942 |
. . . . . . . . 9
| |
| 12 | 8, 10, 11 | syl2anc 411 |
. . . . . . . 8
|
| 13 | simprr 531 |
. . . . . . . 8
| |
| 14 | domentr 6943 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . 7
|
| 16 | simplrl 535 |
. . . . . . . 8
| |
| 17 | simprl 529 |
. . . . . . . 8
| |
| 18 | nndomo 7025 |
. . . . . . . 8
| |
| 19 | 16, 17, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 15, 19 | mpbid 147 |
. . . . . 6
|
| 21 | 13 | ensymd 6935 |
. . . . . . . . 9
|
| 22 | simprr 531 |
. . . . . . . . . 10
| |
| 23 | 22 | ad2antrr 488 |
. . . . . . . . 9
|
| 24 | endomtr 6942 |
. . . . . . . . 9
| |
| 25 | 21, 23, 24 | syl2anc 411 |
. . . . . . . 8
|
| 26 | domentr 6943 |
. . . . . . . 8
| |
| 27 | 25, 7, 26 | syl2anc 411 |
. . . . . . 7
|
| 28 | nndomo 7025 |
. . . . . . . 8
| |
| 29 | 17, 16, 28 | syl2anc 411 |
. . . . . . 7
|
| 30 | 27, 29 | mpbid 147 |
. . . . . 6
|
| 31 | 20, 30 | eqssd 3241 |
. . . . 5
|
| 32 | 7, 31 | breqtrd 4109 |
. . . 4
|
| 33 | entr 6936 |
. . . 4
| |
| 34 | 32, 21, 33 | syl2anc 411 |
. . 3
|
| 35 | 6, 34 | rexlimddv 2653 |
. 2
|
| 36 | 3, 35 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |