ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisbth Unicode version

Theorem fisbth 6551
Description: Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
Assertion
Ref Expression
fisbth  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)

Proof of Theorem fisbth
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6430 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 118 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32ad2antrr 472 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  E. n  e.  om  A  ~~  n )
4 isfi 6430 . . . . 5  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 118 . . . 4  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
65ad3antlr 477 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m
)
7 simplrr 503 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  n )
87ensymd 6452 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  ~~  A )
9 simprl 498 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~<_  B )
109ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~<_  B )
11 endomtr 6459 . . . . . . . . 9  |-  ( ( n  ~~  A  /\  A  ~<_  B )  ->  n  ~<_  B )
128, 10, 11syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  ~<_  B )
13 simprr 499 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  ~~  m )
14 domentr 6460 . . . . . . . 8  |-  ( ( n  ~<_  B  /\  B  ~~  m )  ->  n  ~<_  m )
1512, 13, 14syl2anc 403 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  ~<_  m )
16 simplrl 502 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  om )
17 simprl 498 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  om )
18 nndomo 6532 . . . . . . . 8  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  ~<_  m  <->  n  C_  m
) )
1916, 17, 18syl2anc 403 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  ~<_  m  <->  n  C_  m
) )
2015, 19mpbid 145 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  C_  m )
2113ensymd 6452 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  ~~  B )
22 simprr 499 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  B  ~<_  A )
2322ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  ~<_  A )
24 endomtr 6459 . . . . . . . . 9  |-  ( ( m  ~~  B  /\  B  ~<_  A )  ->  m  ~<_  A )
2521, 23, 24syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  ~<_  A )
26 domentr 6460 . . . . . . . 8  |-  ( ( m  ~<_  A  /\  A  ~~  n )  ->  m  ~<_  n )
2725, 7, 26syl2anc 403 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  ~<_  n )
28 nndomo 6532 . . . . . . . 8  |-  ( ( m  e.  om  /\  n  e.  om )  ->  ( m  ~<_  n  <->  m  C_  n
) )
2917, 16, 28syl2anc 403 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( m  ~<_  n  <->  m  C_  n
) )
3027, 29mpbid 145 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  C_  n )
3120, 30eqssd 3031 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  =  m )
327, 31breqtrd 3844 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  m )
33 entr 6453 . . . 4  |-  ( ( A  ~~  m  /\  m  ~~  B )  ->  A  ~~  B )
3432, 21, 33syl2anc 403 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  B )
356, 34rexlimddv 2489 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  B )
363, 35rexlimddv 2489 1  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1436   E.wrex 2356    C_ wss 2988   class class class wbr 3820   omcom 4378    ~~ cen 6407    ~<_ cdom 6408   Fincfn 6409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-tr 3912  df-id 4094  df-iord 4167  df-on 4169  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-er 6244  df-en 6410  df-dom 6411  df-fin 6412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator