ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltbtwnnq Unicode version

Theorem ltbtwnnq 7564
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltbtwnnq  |-  ( A 
<Q  B  <->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltbtwnnq
StepHypRef Expression
1 df-rex 2492 . 2  |-  ( E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B )  <->  E. x
( x  e.  Q.  /\  ( A  <Q  x  /\  x  <Q  B ) ) )
2 ltbtwnnqq 7563 . 2  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
3 ltrelnq 7513 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
43brel 4745 . . . . . 6  |-  ( A 
<Q  x  ->  ( A  e.  Q.  /\  x  e.  Q. ) )
54simprd 114 . . . . 5  |-  ( A 
<Q  x  ->  x  e. 
Q. )
65adantr 276 . . . 4  |-  ( ( A  <Q  x  /\  x  <Q  B )  ->  x  e.  Q. )
76pm4.71ri 392 . . 3  |-  ( ( A  <Q  x  /\  x  <Q  B )  <->  ( x  e.  Q.  /\  ( A 
<Q  x  /\  x  <Q  B ) ) )
87exbii 1629 . 2  |-  ( E. x ( A  <Q  x  /\  x  <Q  B )  <->  E. x ( x  e. 
Q.  /\  ( A  <Q  x  /\  x  <Q  B ) ) )
91, 2, 83bitr4i 212 1  |-  ( A 
<Q  B  <->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1516    e. wcel 2178   E.wrex 2487   class class class wbr 4059   Q.cnq 7428    <Q cltq 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator