ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posdifi Unicode version

Theorem posdifi 8503
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 19-Aug-2001.)
Hypotheses
Ref Expression
lt2.1  |-  A  e.  RR
lt2.2  |-  B  e.  RR
Assertion
Ref Expression
posdifi  |-  ( A  <  B  <->  0  <  ( B  -  A ) )

Proof of Theorem posdifi
StepHypRef Expression
1 lt2.1 . 2  |-  A  e.  RR
2 lt2.2 . 2  |-  B  e.  RR
3 posdif 8460 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
41, 2, 3mp2an 426 1  |-  ( A  <  B  <->  0  <  ( B  -  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2160   class class class wbr 4025  (class class class)co 5906   RRcr 7857   0cc0 7858    < clt 8040    - cmin 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-addcom 7958  ax-addass 7960  ax-distr 7962  ax-i2m1 7963  ax-0id 7966  ax-rnegex 7967  ax-cnre 7969  ax-pre-ltadd 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2758  df-sbc 2982  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-br 4026  df-opab 4087  df-id 4318  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-iota 5203  df-fun 5244  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-pnf 8042  df-mnf 8043  df-ltxr 8045  df-sub 8178  df-neg 8179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator