| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > topnfn | Unicode version | ||
| Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topnfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restfn 12945 |
. . 3
| |
| 2 | tsetslid 12890 |
. . . . 5
| |
| 3 | 2 | slotex 12730 |
. . . 4
|
| 4 | 3 | elv 2767 |
. . 3
|
| 5 | baseslid 12760 |
. . . . 5
| |
| 6 | 5 | slotex 12730 |
. . . 4
|
| 7 | 6 | elv 2767 |
. . 3
|
| 8 | fnovex 5958 |
. . 3
| |
| 9 | 1, 4, 7, 8 | mp3an 1348 |
. 2
|
| 10 | df-topn 12944 |
. 2
| |
| 11 | 9, 10 | fnmpti 5389 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-ndx 12706 df-slot 12707 df-base 12709 df-tset 12799 df-rest 12943 df-topn 12944 |
| This theorem is referenced by: prdsex 12971 prdsval 12975 prdsbaslemss 12976 psrval 14296 fnpsr 14297 psrbasg 14303 psrplusgg 14306 istps 14352 |
| Copyright terms: Public domain | W3C validator |