ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resttopon2 GIF version

Theorem resttopon2 14860
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ (TopOn‘(𝐴𝑋)))

Proof of Theorem resttopon2
StepHypRef Expression
1 topontop 14696 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 resttop 14852 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
31, 2sylan 283 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
4 toponuni 14697 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
54ineq2d 3405 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐴𝑋) = (𝐴 𝐽))
65adantr 276 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐴 𝐽))
7 eqid 2229 . . . . 5 𝐽 = 𝐽
87restuni2 14859 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
91, 8sylan 283 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐴 𝐽) = (𝐽t 𝐴))
106, 9eqtrd 2262 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐽t 𝐴))
11 istopon 14695 . 2 ((𝐽t 𝐴) ∈ (TopOn‘(𝐴𝑋)) ↔ ((𝐽t 𝐴) ∈ Top ∧ (𝐴𝑋) = (𝐽t 𝐴)))
123, 10, 11sylanbrc 417 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ (TopOn‘(𝐴𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cin 3196   cuni 3888  cfv 5318  (class class class)co 6007  t crest 13280  Topctop 14679  TopOnctopon 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-rest 13282  df-topgen 13301  df-top 14680  df-topon 14693  df-bases 14725
This theorem is referenced by:  lmss  14928
  Copyright terms: Public domain W3C validator