![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resttopon2 | GIF version |
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon2 | β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβ(π΄ β© π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 13917 | . . 3 β’ (π½ β (TopOnβπ) β π½ β Top) | |
2 | resttop 14073 | . . 3 β’ ((π½ β Top β§ π΄ β π) β (π½ βΎt π΄) β Top) | |
3 | 1, 2 | sylan 283 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β Top) |
4 | toponuni 13918 | . . . . 5 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
5 | 4 | ineq2d 3351 | . . . 4 β’ (π½ β (TopOnβπ) β (π΄ β© π) = (π΄ β© βͺ π½)) |
6 | 5 | adantr 276 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π΄ β© π) = (π΄ β© βͺ π½)) |
7 | eqid 2189 | . . . . 5 β’ βͺ π½ = βͺ π½ | |
8 | 7 | restuni2 14080 | . . . 4 β’ ((π½ β Top β§ π΄ β π) β (π΄ β© βͺ π½) = βͺ (π½ βΎt π΄)) |
9 | 1, 8 | sylan 283 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π΄ β© βͺ π½) = βͺ (π½ βΎt π΄)) |
10 | 6, 9 | eqtrd 2222 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π΄ β© π) = βͺ (π½ βΎt π΄)) |
11 | istopon 13916 | . 2 β’ ((π½ βΎt π΄) β (TopOnβ(π΄ β© π)) β ((π½ βΎt π΄) β Top β§ (π΄ β© π) = βͺ (π½ βΎt π΄))) | |
12 | 3, 10, 11 | sylanbrc 417 | 1 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβ(π΄ β© π))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1364 β wcel 2160 β© cin 3143 βͺ cuni 3824 βcfv 5231 (class class class)co 5891 βΎt crest 12716 Topctop 13900 TopOnctopon 13913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-rest 12718 df-topgen 12737 df-top 13901 df-topon 13914 df-bases 13946 |
This theorem is referenced by: lmss 14149 |
Copyright terms: Public domain | W3C validator |