| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seq3caopr2 | Unicode version | ||
| Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.) | 
| Ref | Expression | 
|---|---|
| seq3caopr2.1 | 
 | 
| seq3caopr2.2 | 
 | 
| seq3caopr2.3 | 
 | 
| seq3caopr2.4 | 
 | 
| seq3caopr2.5 | 
 | 
| seq3caopr2.6 | 
 | 
| seq3caopr2.7 | 
 | 
| Ref | Expression | 
|---|---|
| seq3caopr2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | seq3caopr2.1 | 
. 2
 | |
| 2 | seq3caopr2.2 | 
. 2
 | |
| 3 | seq3caopr2.4 | 
. 2
 | |
| 4 | seq3caopr2.5 | 
. 2
 | |
| 5 | seq3caopr2.6 | 
. 2
 | |
| 6 | seq3caopr2.7 | 
. 2
 | |
| 7 | eqid 2196 | 
. . . . 5
 | |
| 8 | eluzel2 9606 | 
. . . . . . 7
 | |
| 9 | 3, 8 | syl 14 | 
. . . . . 6
 | 
| 10 | 9 | adantr 276 | 
. . . . 5
 | 
| 11 | 5 | ralrimiva 2570 | 
. . . . . . 7
 | 
| 12 | 11 | adantr 276 | 
. . . . . 6
 | 
| 13 | fveq2 5558 | 
. . . . . . . 8
 | |
| 14 | 13 | eleq1d 2265 | 
. . . . . . 7
 | 
| 15 | 14 | rspccva 2867 | 
. . . . . 6
 | 
| 16 | 12, 15 | sylan 283 | 
. . . . 5
 | 
| 17 | 1 | adantlr 477 | 
. . . . 5
 | 
| 18 | 7, 10, 16, 17 | seqf 10556 | 
. . . 4
 | 
| 19 | elfzouz 10226 | 
. . . . 5
 | |
| 20 | 19 | adantl 277 | 
. . . 4
 | 
| 21 | 18, 20 | ffvelcdmd 5698 | 
. . 3
 | 
| 22 | fzssuz 10140 | 
. . . . 5
 | |
| 23 | fzofzp1 10303 | 
. . . . 5
 | |
| 24 | 22, 23 | sselid 3181 | 
. . . 4
 | 
| 25 | fveq2 5558 | 
. . . . . 6
 | |
| 26 | 25 | eleq1d 2265 | 
. . . . 5
 | 
| 27 | 26 | rspccva 2867 | 
. . . 4
 | 
| 28 | 11, 24, 27 | syl2an 289 | 
. . 3
 | 
| 29 | 4 | ralrimiva 2570 | 
. . . . . . . 8
 | 
| 30 | fveq2 5558 | 
. . . . . . . . . 10
 | |
| 31 | 30 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 32 | 31 | rspccva 2867 | 
. . . . . . . 8
 | 
| 33 | 29, 32 | sylan 283 | 
. . . . . . 7
 | 
| 34 | 33 | adantlr 477 | 
. . . . . 6
 | 
| 35 | 7, 10, 34, 17 | seqf 10556 | 
. . . . 5
 | 
| 36 | 35, 20 | ffvelcdmd 5698 | 
. . . 4
 | 
| 37 | fveq2 5558 | 
. . . . . . 7
 | |
| 38 | 37 | eleq1d 2265 | 
. . . . . 6
 | 
| 39 | 38 | rspccva 2867 | 
. . . . 5
 | 
| 40 | 29, 24, 39 | syl2an 289 | 
. . . 4
 | 
| 41 | seq3caopr2.3 | 
. . . . . . . 8
 | |
| 42 | 41 | anassrs 400 | 
. . . . . . 7
 | 
| 43 | 42 | ralrimivva 2579 | 
. . . . . 6
 | 
| 44 | 43 | ralrimivva 2579 | 
. . . . 5
 | 
| 45 | 44 | adantr 276 | 
. . . 4
 | 
| 46 | oveq1 5929 | 
. . . . . . . 8
 | |
| 47 | 46 | oveq1d 5937 | 
. . . . . . 7
 | 
| 48 | oveq1 5929 | 
. . . . . . . 8
 | |
| 49 | 48 | oveq1d 5937 | 
. . . . . . 7
 | 
| 50 | 47, 49 | eqeq12d 2211 | 
. . . . . 6
 | 
| 51 | 50 | 2ralbidv 2521 | 
. . . . 5
 | 
| 52 | oveq1 5929 | 
. . . . . . . 8
 | |
| 53 | 52 | oveq2d 5938 | 
. . . . . . 7
 | 
| 54 | oveq2 5930 | 
. . . . . . . 8
 | |
| 55 | 54 | oveq1d 5937 | 
. . . . . . 7
 | 
| 56 | 53, 55 | eqeq12d 2211 | 
. . . . . 6
 | 
| 57 | 56 | 2ralbidv 2521 | 
. . . . 5
 | 
| 58 | 51, 57 | rspc2va 2882 | 
. . . 4
 | 
| 59 | 36, 40, 45, 58 | syl21anc 1248 | 
. . 3
 | 
| 60 | oveq2 5930 | 
. . . . . 6
 | |
| 61 | 60 | oveq1d 5937 | 
. . . . 5
 | 
| 62 | oveq1 5929 | 
. . . . . 6
 | |
| 63 | 62 | oveq2d 5938 | 
. . . . 5
 | 
| 64 | 61, 63 | eqeq12d 2211 | 
. . . 4
 | 
| 65 | oveq2 5930 | 
. . . . . 6
 | |
| 66 | 65 | oveq2d 5938 | 
. . . . 5
 | 
| 67 | oveq2 5930 | 
. . . . . 6
 | |
| 68 | 67 | oveq2d 5938 | 
. . . . 5
 | 
| 69 | 66, 68 | eqeq12d 2211 | 
. . . 4
 | 
| 70 | 64, 69 | rspc2va 2882 | 
. . 3
 | 
| 71 | 21, 28, 59, 70 | syl21anc 1248 | 
. 2
 | 
| 72 | 1, 2, 3, 4, 5, 6, 71 | seq3caopr3 10583 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 df-seqfrec 10540 | 
| This theorem is referenced by: seq3caopr 10587 ser3sub 10615 | 
| Copyright terms: Public domain | W3C validator |