ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3caopr2 Unicode version

Theorem seq3caopr2 10385
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seqcaopr2.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqcaopr2.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
seqcaopr2.3  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S
) ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
seqcaopr2.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seq3caopr2.5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
seq3caopr2.6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
seq3caopr2.7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
Assertion
Ref Expression
seq3caopr2  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Distinct variable groups:    w,  .+ , x, y, z    k, F, w, x, y, z    k, G, w, x, y, z   
k, H, x, y, z    k, M, w, x, y, z    k, N, x, y, z    Q, k, w, x, y, z    S, k, w, x, y, z    ph, k, w, x, y, z
Allowed substitution hints:    .+ ( k)    H( w)    N( w)

Proof of Theorem seq3caopr2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 seqcaopr2.1 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2 seqcaopr2.2 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
3 seqcaopr2.4 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 seq3caopr2.5 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  S
)
5 seq3caopr2.6 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  S
)
6 seq3caopr2.7 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
) Q ( G `
 k ) ) )
7 eqid 2157 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
8 eluzel2 9445 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
93, 8syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
109adantr 274 . . . . 5  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  M  e.  ZZ )
115ralrimiva 2530 . . . . . . 7  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( G `  k )  e.  S )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. k  e.  (
ZZ>= `  M ) ( G `  k )  e.  S )
13 fveq2 5469 . . . . . . . 8  |-  ( k  =  x  ->  ( G `  k )  =  ( G `  x ) )
1413eleq1d 2226 . . . . . . 7  |-  ( k  =  x  ->  (
( G `  k
)  e.  S  <->  ( G `  x )  e.  S
) )
1514rspccva 2815 . . . . . 6  |-  ( ( A. k  e.  (
ZZ>= `  M ) ( G `  k )  e.  S  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
1612, 15sylan 281 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
171adantlr 469 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
187, 10, 16, 17seqf 10364 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  seq M (  .+  ,  G ) : (
ZZ>= `  M ) --> S )
19 elfzouz 10054 . . . . 5  |-  ( n  e.  ( M..^ N
)  ->  n  e.  ( ZZ>= `  M )
)
2019adantl 275 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  n  e.  (
ZZ>= `  M ) )
2118, 20ffvelrnd 5604 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  G
) `  n )  e.  S )
22 fzssuz 9968 . . . . 5  |-  ( M ... N )  C_  ( ZZ>= `  M )
23 fzofzp1 10130 . . . . 5  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( M ... N
) )
2422, 23sseldi 3126 . . . 4  |-  ( n  e.  ( M..^ N
)  ->  ( n  +  1 )  e.  ( ZZ>= `  M )
)
25 fveq2 5469 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
2625eleq1d 2226 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( G `  k
)  e.  S  <->  ( G `  ( n  +  1 ) )  e.  S
) )
2726rspccva 2815 . . . 4  |-  ( ( A. k  e.  (
ZZ>= `  M ) ( G `  k )  e.  S  /\  (
n  +  1 )  e.  ( ZZ>= `  M
) )  ->  ( G `  ( n  +  1 ) )  e.  S )
2811, 24, 27syl2an 287 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( G `  ( n  +  1
) )  e.  S
)
294ralrimiva 2530 . . . . . . . 8  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  S )
30 fveq2 5469 . . . . . . . . . 10  |-  ( k  =  x  ->  ( F `  k )  =  ( F `  x ) )
3130eleq1d 2226 . . . . . . . . 9  |-  ( k  =  x  ->  (
( F `  k
)  e.  S  <->  ( F `  x )  e.  S
) )
3231rspccva 2815 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  S  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
3329, 32sylan 281 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
3433adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( M..^ N ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
357, 10, 34, 17seqf 10364 . . . . 5  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
3635, 20ffvelrnd 5604 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  (  seq M
(  .+  ,  F
) `  n )  e.  S )
37 fveq2 5469 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
3837eleq1d 2226 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  S  <->  ( F `  ( n  +  1 ) )  e.  S
) )
3938rspccva 2815 . . . . 5  |-  ( ( A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  S  /\  (
n  +  1 )  e.  ( ZZ>= `  M
) )  ->  ( F `  ( n  +  1 ) )  e.  S )
4029, 24, 39syl2an 287 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  ( n  +  1
) )  e.  S
)
41 seqcaopr2.3 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  S  /\  y  e.  S )  /\  ( z  e.  S  /\  w  e.  S
) ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4241anassrs 398 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4342ralrimivva 2539 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4443ralrimivva 2539 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
4544adantr 274 . . . 4  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( x  .+  y ) Q ( z  .+  w ) ) )
46 oveq1 5832 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x Q z )  =  ( (  seq M (  .+  ,  F ) `  n
) Q z ) )
4746oveq1d 5840 . . . . . . 7  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( x Q z )  .+  (
y Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n ) Q z )  .+  (
y Q w ) ) )
48 oveq1 5832 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( x  .+  y
)  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  y )
)
4948oveq1d 5840 . . . . . . 7  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( x  .+  y ) Q ( z  .+  w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  y ) Q ( z  .+  w ) ) )
5047, 49eqeq12d 2172 . . . . . 6  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( ( ( x Q z )  .+  ( y Q w ) )  =  ( ( x  .+  y
) Q ( z 
.+  w ) )  <-> 
( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) ) ) )
51502ralbidv 2481 . . . . 5  |-  ( x  =  (  seq M
(  .+  ,  F
) `  n )  ->  ( A. z  e.  S  A. w  e.  S  ( ( x Q z )  .+  ( y Q w ) )  =  ( ( x  .+  y
) Q ( z 
.+  w ) )  <->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) ) ) )
52 oveq1 5832 . . . . . . . 8  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
y Q w )  =  ( ( F `
 ( n  + 
1 ) ) Q w ) )
5352oveq2d 5841 . . . . . . 7  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( y Q w ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( ( F `  ( n  +  1
) ) Q w ) ) )
54 oveq2 5833 . . . . . . . 8  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  F ) `  n
)  .+  y )  =  ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) )
5554oveq1d 5840 . . . . . . 7  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n )  .+  y ) Q ( z  .+  w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( z 
.+  w ) ) )
5653, 55eqeq12d 2172 . . . . . 6  |-  ( y  =  ( F `  ( n  +  1
) )  ->  (
( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) )  <->  ( (
(  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) ) )
57562ralbidv 2481 . . . . 5  |-  ( y  =  ( F `  ( n  +  1
) )  ->  ( A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( y Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  y ) Q ( z  .+  w ) )  <->  A. z  e.  S  A. w  e.  S  ( (
(  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) ) )
5851, 57rspc2va 2830 . . . 4  |-  ( ( ( (  seq M
(  .+  ,  F
) `  n )  e.  S  /\  ( F `  ( n  +  1 ) )  e.  S )  /\  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. w  e.  S  (
( x Q z )  .+  ( y Q w ) )  =  ( ( x 
.+  y ) Q ( z  .+  w
) ) )  ->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) )
5936, 40, 45, 58syl21anc 1219 . . 3  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  A. z  e.  S  A. w  e.  S  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) ) )
60 oveq2 5833 . . . . . 6  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( (  seq M
(  .+  ,  F
) `  n ) Q z )  =  ( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
) )
6160oveq1d 5840 . . . . 5  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) ) )
62 oveq1 5832 . . . . . 6  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( z  .+  w
)  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
)
6362oveq2d 5841 . . . . 5  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  w ) ) )
6461, 63eqeq12d 2172 . . . 4  |-  ( z  =  (  seq M
(  .+  ,  G
) `  n )  ->  ( ( ( (  seq M (  .+  ,  F ) `  n
) Q z ) 
.+  ( ( F `
 ( n  + 
1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( z  .+  w
) )  <->  ( (
(  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
) ) )
65 oveq2 5833 . . . . . 6  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( F `  (
n  +  1 ) ) Q w )  =  ( ( F `
 ( n  + 
1 ) ) Q ( G `  (
n  +  1 ) ) ) )
6665oveq2d 5841 . . . . 5  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( ( F `  ( n  +  1 ) ) Q w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) ) )
67 oveq2 5833 . . . . . 6  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
(  seq M (  .+  ,  G ) `  n
)  .+  w )  =  ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) )
6867oveq2d 5841 . . . . 5  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( (  seq M ( 
.+  ,  G ) `
 n )  .+  w ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) ) )
6966, 68eqeq12d 2172 . . . 4  |-  ( w  =  ( G `  ( n  +  1
) )  ->  (
( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q w ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  w )
)  <->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) ) )
7064, 69rspc2va 2830 . . 3  |-  ( ( ( (  seq M
(  .+  ,  G
) `  n )  e.  S  /\  ( G `  ( n  +  1 ) )  e.  S )  /\  A. z  e.  S  A. w  e.  S  (
( (  seq M
(  .+  ,  F
) `  n ) Q z )  .+  ( ( F `  ( n  +  1
) ) Q w ) )  =  ( ( (  seq M
(  .+  ,  F
) `  n )  .+  ( F `  (
n  +  1 ) ) ) Q ( z  .+  w ) ) )  ->  (
( (  seq M
(  .+  ,  F
) `  n ) Q (  seq M
(  .+  ,  G
) `  n )
)  .+  ( ( F `  ( n  +  1 ) ) Q ( G `  ( n  +  1
) ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n
)  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M
(  .+  ,  G
) `  n )  .+  ( G `  (
n  +  1 ) ) ) ) )
7121, 28, 59, 70syl21anc 1219 . 2  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n
) Q (  seq M (  .+  ,  G ) `  n
) )  .+  (
( F `  (
n  +  1 ) ) Q ( G `
 ( n  + 
1 ) ) ) )  =  ( ( (  seq M ( 
.+  ,  F ) `
 n )  .+  ( F `  ( n  +  1 ) ) ) Q ( (  seq M (  .+  ,  G ) `  n
)  .+  ( G `  ( n  +  1 ) ) ) ) )
721, 2, 3, 4, 5, 6, 71seq3caopr3 10384 1  |-  ( ph  ->  (  seq M ( 
.+  ,  H ) `
 N )  =  ( (  seq M
(  .+  ,  F
) `  N ) Q (  seq M
(  .+  ,  G
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   ` cfv 5171  (class class class)co 5825   1c1 7734    + caddc 7736   ZZcz 9168   ZZ>=cuz 9440   ...cfz 9913  ..^cfzo 10045    seqcseq 10348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-n0 9092  df-z 9169  df-uz 9441  df-fz 9914  df-fzo 10046  df-seqfrec 10349
This theorem is referenced by:  seq3caopr  10386  ser3sub  10409
  Copyright terms: Public domain W3C validator