ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvssd Unicode version

Theorem grpinvssd 13149
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m  |-  ( ph  ->  M  e.  Grp )
grpidssd.s  |-  ( ph  ->  S  e.  Grp )
grpidssd.b  |-  B  =  ( Base `  S
)
grpidssd.c  |-  ( ph  ->  B  C_  ( Base `  M ) )
grpidssd.o  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
grpinvssd  |-  ( ph  ->  ( X  e.  B  ->  ( ( invg `  S ) `  X
)  =  ( ( invg `  M
) `  X )
) )
Distinct variable groups:    x, B, y   
x, M, y    x, S, y    x, X, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem grpinvssd
StepHypRef Expression
1 grpidssd.s . . . . . 6  |-  ( ph  ->  S  e.  Grp )
2 grpidssd.b . . . . . . 7  |-  B  =  ( Base `  S
)
3 eqid 2193 . . . . . . 7  |-  ( invg `  S )  =  ( invg `  S )
42, 3grpinvcl 13120 . . . . . 6  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( ( invg `  S ) `  X
)  e.  B )
51, 4sylan 283 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  S ) `  X
)  e.  B )
6 simpr 110 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  X  e.  B )
7 grpidssd.o . . . . . 6  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
87adantr 276 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  M ) y )  =  ( x ( +g  `  S
) y ) )
9 oveq1 5925 . . . . . . 7  |-  ( x  =  ( ( invg `  S ) `
 X )  -> 
( x ( +g  `  M ) y )  =  ( ( ( invg `  S
) `  X )
( +g  `  M ) y ) )
10 oveq1 5925 . . . . . . 7  |-  ( x  =  ( ( invg `  S ) `
 X )  -> 
( x ( +g  `  S ) y )  =  ( ( ( invg `  S
) `  X )
( +g  `  S ) y ) )
119, 10eqeq12d 2208 . . . . . 6  |-  ( x  =  ( ( invg `  S ) `
 X )  -> 
( ( x ( +g  `  M ) y )  =  ( x ( +g  `  S
) y )  <->  ( (
( invg `  S ) `  X
) ( +g  `  M
) y )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) y ) ) )
12 oveq2 5926 . . . . . . 7  |-  ( y  =  X  ->  (
( ( invg `  S ) `  X
) ( +g  `  M
) y )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  M ) X ) )
13 oveq2 5926 . . . . . . 7  |-  ( y  =  X  ->  (
( ( invg `  S ) `  X
) ( +g  `  S
) y )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) )
1412, 13eqeq12d 2208 . . . . . 6  |-  ( y  =  X  ->  (
( ( ( invg `  S ) `
 X ) ( +g  `  M ) y )  =  ( ( ( invg `  S ) `  X
) ( +g  `  S
) y )  <->  ( (
( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) ) )
1511, 14rspc2va 2878 . . . . 5  |-  ( ( ( ( ( invg `  S ) `
 X )  e.  B  /\  X  e.  B )  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  M
) y )  =  ( x ( +g  `  S ) y ) )  ->  ( (
( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) )
165, 6, 8, 15syl21anc 1248 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) )
17 eqid 2193 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
18 eqid 2193 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
192, 17, 18, 3grplinv 13122 . . . . 5  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X )  =  ( 0g `  S ) )
201, 19sylan 283 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  S ) `  X
) ( +g  `  S
) X )  =  ( 0g `  S
) )
21 grpidssd.m . . . . . 6  |-  ( ph  ->  M  e.  Grp )
22 grpidssd.c . . . . . . 7  |-  ( ph  ->  B  C_  ( Base `  M ) )
2322sselda 3179 . . . . . 6  |-  ( (
ph  /\  X  e.  B )  ->  X  e.  ( Base `  M
) )
24 eqid 2193 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
25 eqid 2193 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
26 eqid 2193 . . . . . . 7  |-  ( 0g
`  M )  =  ( 0g `  M
)
27 eqid 2193 . . . . . . 7  |-  ( invg `  M )  =  ( invg `  M )
2824, 25, 26, 27grplinv 13122 . . . . . 6  |-  ( ( M  e.  Grp  /\  X  e.  ( Base `  M ) )  -> 
( ( ( invg `  M ) `
 X ) ( +g  `  M ) X )  =  ( 0g `  M ) )
2921, 23, 28syl2an2r 595 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  M ) `  X
) ( +g  `  M
) X )  =  ( 0g `  M
) )
3021, 1, 2, 22, 7grpidssd 13148 . . . . . 6  |-  ( ph  ->  ( 0g `  M
)  =  ( 0g
`  S ) )
3130adantr 276 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  ( 0g `  M )  =  ( 0g `  S
) )
3229, 31eqtr2d 2227 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  ( 0g `  S )  =  ( ( ( invg `  M ) `
 X ) ( +g  `  M ) X ) )
3316, 20, 323eqtrd 2230 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  M ) `
 X ) ( +g  `  M ) X ) )
3421adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  M  e.  Grp )
3522adantr 276 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  B  C_  ( Base `  M
) )
3635, 5sseldd 3180 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  S ) `  X
)  e.  ( Base `  M ) )
3724, 27grpinvcl 13120 . . . . 5  |-  ( ( M  e.  Grp  /\  X  e.  ( Base `  M ) )  -> 
( ( invg `  M ) `  X
)  e.  ( Base `  M ) )
3821, 23, 37syl2an2r 595 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  M ) `  X
)  e.  ( Base `  M ) )
3924, 25grprcan 13109 . . . 4  |-  ( ( M  e.  Grp  /\  ( ( ( invg `  S ) `
 X )  e.  ( Base `  M
)  /\  ( ( invg `  M ) `
 X )  e.  ( Base `  M
)  /\  X  e.  ( Base `  M )
) )  ->  (
( ( ( invg `  S ) `
 X ) ( +g  `  M ) X )  =  ( ( ( invg `  M ) `  X
) ( +g  `  M
) X )  <->  ( ( invg `  S ) `
 X )  =  ( ( invg `  M ) `  X
) ) )
4034, 36, 38, 23, 39syl13anc 1251 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( ( invg `  S ) `
 X ) ( +g  `  M ) X )  =  ( ( ( invg `  M ) `  X
) ( +g  `  M
) X )  <->  ( ( invg `  S ) `
 X )  =  ( ( invg `  M ) `  X
) ) )
4133, 40mpbid 147 . 2  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  S ) `  X
)  =  ( ( invg `  M
) `  X )
)
4241ex 115 1  |-  ( ph  ->  ( X  e.  B  ->  ( ( invg `  S ) `  X
)  =  ( ( invg `  M
) `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072   invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076
This theorem is referenced by:  grpissubg  13264
  Copyright terms: Public domain W3C validator