Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinvssd | Unicode version |
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.) |
Ref | Expression |
---|---|
grpidssd.m | |
grpidssd.s | |
grpidssd.b | |
grpidssd.c | |
grpidssd.o |
Ref | Expression |
---|---|
grpinvssd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidssd.s | . . . . . 6 | |
2 | grpidssd.b | . . . . . . 7 | |
3 | eqid 2171 | . . . . . . 7 | |
4 | 2, 3 | grpinvcl 12773 | . . . . . 6 |
5 | 1, 4 | sylan 281 | . . . . 5 |
6 | simpr 109 | . . . . 5 | |
7 | grpidssd.o | . . . . . 6 | |
8 | 7 | adantr 274 | . . . . 5 |
9 | oveq1 5864 | . . . . . . 7 | |
10 | oveq1 5864 | . . . . . . 7 | |
11 | 9, 10 | eqeq12d 2186 | . . . . . 6 |
12 | oveq2 5865 | . . . . . . 7 | |
13 | oveq2 5865 | . . . . . . 7 | |
14 | 12, 13 | eqeq12d 2186 | . . . . . 6 |
15 | 11, 14 | rspc2va 2849 | . . . . 5 |
16 | 5, 6, 8, 15 | syl21anc 1233 | . . . 4 |
17 | eqid 2171 | . . . . . 6 | |
18 | eqid 2171 | . . . . . 6 | |
19 | 2, 17, 18, 3 | grplinv 12774 | . . . . 5 |
20 | 1, 19 | sylan 281 | . . . 4 |
21 | grpidssd.m | . . . . . 6 | |
22 | grpidssd.c | . . . . . . 7 | |
23 | 22 | sselda 3148 | . . . . . 6 |
24 | eqid 2171 | . . . . . . 7 | |
25 | eqid 2171 | . . . . . . 7 | |
26 | eqid 2171 | . . . . . . 7 | |
27 | eqid 2171 | . . . . . . 7 | |
28 | 24, 25, 26, 27 | grplinv 12774 | . . . . . 6 |
29 | 21, 23, 28 | syl2an2r 591 | . . . . 5 |
30 | 21, 1, 2, 22, 7 | grpidssd 12797 | . . . . . 6 |
31 | 30 | adantr 274 | . . . . 5 |
32 | 29, 31 | eqtr2d 2205 | . . . 4 |
33 | 16, 20, 32 | 3eqtrd 2208 | . . 3 |
34 | 21 | adantr 274 | . . . 4 |
35 | 22 | adantr 274 | . . . . 5 |
36 | 35, 5 | sseldd 3149 | . . . 4 |
37 | 24, 27 | grpinvcl 12773 | . . . . 5 |
38 | 21, 23, 37 | syl2an2r 591 | . . . 4 |
39 | 24, 25 | grprcan 12762 | . . . 4 |
40 | 34, 36, 38, 23, 39 | syl13anc 1236 | . . 3 |
41 | 33, 40 | mpbid 146 | . 2 |
42 | 41 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1349 wcel 2142 wral 2449 wss 3122 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12618 cgrp 12730 cminusg 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |