| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvssd | Unicode version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpidssd.m |
|
| grpidssd.s |
|
| grpidssd.b |
|
| grpidssd.c |
|
| grpidssd.o |
|
| Ref | Expression |
|---|---|
| grpinvssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidssd.s |
. . . . . 6
| |
| 2 | grpidssd.b |
. . . . . . 7
| |
| 3 | eqid 2206 |
. . . . . . 7
| |
| 4 | 2, 3 | grpinvcl 13455 |
. . . . . 6
|
| 5 | 1, 4 | sylan 283 |
. . . . 5
|
| 6 | simpr 110 |
. . . . 5
| |
| 7 | grpidssd.o |
. . . . . 6
| |
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | oveq1 5964 |
. . . . . . 7
| |
| 10 | oveq1 5964 |
. . . . . . 7
| |
| 11 | 9, 10 | eqeq12d 2221 |
. . . . . 6
|
| 12 | oveq2 5965 |
. . . . . . 7
| |
| 13 | oveq2 5965 |
. . . . . . 7
| |
| 14 | 12, 13 | eqeq12d 2221 |
. . . . . 6
|
| 15 | 11, 14 | rspc2va 2895 |
. . . . 5
|
| 16 | 5, 6, 8, 15 | syl21anc 1249 |
. . . 4
|
| 17 | eqid 2206 |
. . . . . 6
| |
| 18 | eqid 2206 |
. . . . . 6
| |
| 19 | 2, 17, 18, 3 | grplinv 13457 |
. . . . 5
|
| 20 | 1, 19 | sylan 283 |
. . . 4
|
| 21 | grpidssd.m |
. . . . . 6
| |
| 22 | grpidssd.c |
. . . . . . 7
| |
| 23 | 22 | sselda 3197 |
. . . . . 6
|
| 24 | eqid 2206 |
. . . . . . 7
| |
| 25 | eqid 2206 |
. . . . . . 7
| |
| 26 | eqid 2206 |
. . . . . . 7
| |
| 27 | eqid 2206 |
. . . . . . 7
| |
| 28 | 24, 25, 26, 27 | grplinv 13457 |
. . . . . 6
|
| 29 | 21, 23, 28 | syl2an2r 595 |
. . . . 5
|
| 30 | 21, 1, 2, 22, 7 | grpidssd 13483 |
. . . . . 6
|
| 31 | 30 | adantr 276 |
. . . . 5
|
| 32 | 29, 31 | eqtr2d 2240 |
. . . 4
|
| 33 | 16, 20, 32 | 3eqtrd 2243 |
. . 3
|
| 34 | 21 | adantr 276 |
. . . 4
|
| 35 | 22 | adantr 276 |
. . . . 5
|
| 36 | 35, 5 | sseldd 3198 |
. . . 4
|
| 37 | 24, 27 | grpinvcl 13455 |
. . . . 5
|
| 38 | 21, 23, 37 | syl2an2r 595 |
. . . 4
|
| 39 | 24, 25 | grprcan 13444 |
. . . 4
|
| 40 | 34, 36, 38, 23, 39 | syl13anc 1252 |
. . 3
|
| 41 | 33, 40 | mpbid 147 |
. 2
|
| 42 | 41 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 |
| This theorem is referenced by: grpissubg 13605 |
| Copyright terms: Public domain | W3C validator |