ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvssd Unicode version

Theorem grpinvssd 13484
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m  |-  ( ph  ->  M  e.  Grp )
grpidssd.s  |-  ( ph  ->  S  e.  Grp )
grpidssd.b  |-  B  =  ( Base `  S
)
grpidssd.c  |-  ( ph  ->  B  C_  ( Base `  M ) )
grpidssd.o  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
Assertion
Ref Expression
grpinvssd  |-  ( ph  ->  ( X  e.  B  ->  ( ( invg `  S ) `  X
)  =  ( ( invg `  M
) `  X )
) )
Distinct variable groups:    x, B, y   
x, M, y    x, S, y    x, X, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem grpinvssd
StepHypRef Expression
1 grpidssd.s . . . . . 6  |-  ( ph  ->  S  e.  Grp )
2 grpidssd.b . . . . . . 7  |-  B  =  ( Base `  S
)
3 eqid 2206 . . . . . . 7  |-  ( invg `  S )  =  ( invg `  S )
42, 3grpinvcl 13455 . . . . . 6  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( ( invg `  S ) `  X
)  e.  B )
51, 4sylan 283 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  S ) `  X
)  e.  B )
6 simpr 110 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  X  e.  B )
7 grpidssd.o . . . . . 6  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  =  ( x ( +g  `  S ) y ) )
87adantr 276 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  M ) y )  =  ( x ( +g  `  S
) y ) )
9 oveq1 5964 . . . . . . 7  |-  ( x  =  ( ( invg `  S ) `
 X )  -> 
( x ( +g  `  M ) y )  =  ( ( ( invg `  S
) `  X )
( +g  `  M ) y ) )
10 oveq1 5964 . . . . . . 7  |-  ( x  =  ( ( invg `  S ) `
 X )  -> 
( x ( +g  `  S ) y )  =  ( ( ( invg `  S
) `  X )
( +g  `  S ) y ) )
119, 10eqeq12d 2221 . . . . . 6  |-  ( x  =  ( ( invg `  S ) `
 X )  -> 
( ( x ( +g  `  M ) y )  =  ( x ( +g  `  S
) y )  <->  ( (
( invg `  S ) `  X
) ( +g  `  M
) y )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) y ) ) )
12 oveq2 5965 . . . . . . 7  |-  ( y  =  X  ->  (
( ( invg `  S ) `  X
) ( +g  `  M
) y )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  M ) X ) )
13 oveq2 5965 . . . . . . 7  |-  ( y  =  X  ->  (
( ( invg `  S ) `  X
) ( +g  `  S
) y )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) )
1412, 13eqeq12d 2221 . . . . . 6  |-  ( y  =  X  ->  (
( ( ( invg `  S ) `
 X ) ( +g  `  M ) y )  =  ( ( ( invg `  S ) `  X
) ( +g  `  S
) y )  <->  ( (
( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) ) )
1511, 14rspc2va 2895 . . . . 5  |-  ( ( ( ( ( invg `  S ) `
 X )  e.  B  /\  X  e.  B )  /\  A. x  e.  B  A. y  e.  B  (
x ( +g  `  M
) y )  =  ( x ( +g  `  S ) y ) )  ->  ( (
( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) )
165, 6, 8, 15syl21anc 1249 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X ) )
17 eqid 2206 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
18 eqid 2206 . . . . . 6  |-  ( 0g
`  S )  =  ( 0g `  S
)
192, 17, 18, 3grplinv 13457 . . . . 5  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( ( ( invg `  S ) `
 X ) ( +g  `  S ) X )  =  ( 0g `  S ) )
201, 19sylan 283 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  S ) `  X
) ( +g  `  S
) X )  =  ( 0g `  S
) )
21 grpidssd.m . . . . . 6  |-  ( ph  ->  M  e.  Grp )
22 grpidssd.c . . . . . . 7  |-  ( ph  ->  B  C_  ( Base `  M ) )
2322sselda 3197 . . . . . 6  |-  ( (
ph  /\  X  e.  B )  ->  X  e.  ( Base `  M
) )
24 eqid 2206 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
25 eqid 2206 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
26 eqid 2206 . . . . . . 7  |-  ( 0g
`  M )  =  ( 0g `  M
)
27 eqid 2206 . . . . . . 7  |-  ( invg `  M )  =  ( invg `  M )
2824, 25, 26, 27grplinv 13457 . . . . . 6  |-  ( ( M  e.  Grp  /\  X  e.  ( Base `  M ) )  -> 
( ( ( invg `  M ) `
 X ) ( +g  `  M ) X )  =  ( 0g `  M ) )
2921, 23, 28syl2an2r 595 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  M ) `  X
) ( +g  `  M
) X )  =  ( 0g `  M
) )
3021, 1, 2, 22, 7grpidssd 13483 . . . . . 6  |-  ( ph  ->  ( 0g `  M
)  =  ( 0g
`  S ) )
3130adantr 276 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  ( 0g `  M )  =  ( 0g `  S
) )
3229, 31eqtr2d 2240 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  ( 0g `  S )  =  ( ( ( invg `  M ) `
 X ) ( +g  `  M ) X ) )
3316, 20, 323eqtrd 2243 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( invg `  S ) `  X
) ( +g  `  M
) X )  =  ( ( ( invg `  M ) `
 X ) ( +g  `  M ) X ) )
3421adantr 276 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  M  e.  Grp )
3522adantr 276 . . . . 5  |-  ( (
ph  /\  X  e.  B )  ->  B  C_  ( Base `  M
) )
3635, 5sseldd 3198 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  S ) `  X
)  e.  ( Base `  M ) )
3724, 27grpinvcl 13455 . . . . 5  |-  ( ( M  e.  Grp  /\  X  e.  ( Base `  M ) )  -> 
( ( invg `  M ) `  X
)  e.  ( Base `  M ) )
3821, 23, 37syl2an2r 595 . . . 4  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  M ) `  X
)  e.  ( Base `  M ) )
3924, 25grprcan 13444 . . . 4  |-  ( ( M  e.  Grp  /\  ( ( ( invg `  S ) `
 X )  e.  ( Base `  M
)  /\  ( ( invg `  M ) `
 X )  e.  ( Base `  M
)  /\  X  e.  ( Base `  M )
) )  ->  (
( ( ( invg `  S ) `
 X ) ( +g  `  M ) X )  =  ( ( ( invg `  M ) `  X
) ( +g  `  M
) X )  <->  ( ( invg `  S ) `
 X )  =  ( ( invg `  M ) `  X
) ) )
4034, 36, 38, 23, 39syl13anc 1252 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  (
( ( ( invg `  S ) `
 X ) ( +g  `  M ) X )  =  ( ( ( invg `  M ) `  X
) ( +g  `  M
) X )  <->  ( ( invg `  S ) `
 X )  =  ( ( invg `  M ) `  X
) ) )
4133, 40mpbid 147 . 2  |-  ( (
ph  /\  X  e.  B )  ->  (
( invg `  S ) `  X
)  =  ( ( invg `  M
) `  X )
)
4241ex 115 1  |-  ( ph  ->  ( X  e.  B  ->  ( ( invg `  S ) `  X
)  =  ( ( invg `  M
) `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485    C_ wss 3170   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Grpcgrp 13407   invgcminusg 13408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411
This theorem is referenced by:  grpissubg  13605
  Copyright terms: Public domain W3C validator