| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grpinvssd | Unicode version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| grpidssd.m | 
 | 
| grpidssd.s | 
 | 
| grpidssd.b | 
 | 
| grpidssd.c | 
 | 
| grpidssd.o | 
 | 
| Ref | Expression | 
|---|---|
| grpinvssd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpidssd.s | 
. . . . . 6
 | |
| 2 | grpidssd.b | 
. . . . . . 7
 | |
| 3 | eqid 2196 | 
. . . . . . 7
 | |
| 4 | 2, 3 | grpinvcl 13180 | 
. . . . . 6
 | 
| 5 | 1, 4 | sylan 283 | 
. . . . 5
 | 
| 6 | simpr 110 | 
. . . . 5
 | |
| 7 | grpidssd.o | 
. . . . . 6
 | |
| 8 | 7 | adantr 276 | 
. . . . 5
 | 
| 9 | oveq1 5929 | 
. . . . . . 7
 | |
| 10 | oveq1 5929 | 
. . . . . . 7
 | |
| 11 | 9, 10 | eqeq12d 2211 | 
. . . . . 6
 | 
| 12 | oveq2 5930 | 
. . . . . . 7
 | |
| 13 | oveq2 5930 | 
. . . . . . 7
 | |
| 14 | 12, 13 | eqeq12d 2211 | 
. . . . . 6
 | 
| 15 | 11, 14 | rspc2va 2882 | 
. . . . 5
 | 
| 16 | 5, 6, 8, 15 | syl21anc 1248 | 
. . . 4
 | 
| 17 | eqid 2196 | 
. . . . . 6
 | |
| 18 | eqid 2196 | 
. . . . . 6
 | |
| 19 | 2, 17, 18, 3 | grplinv 13182 | 
. . . . 5
 | 
| 20 | 1, 19 | sylan 283 | 
. . . 4
 | 
| 21 | grpidssd.m | 
. . . . . 6
 | |
| 22 | grpidssd.c | 
. . . . . . 7
 | |
| 23 | 22 | sselda 3183 | 
. . . . . 6
 | 
| 24 | eqid 2196 | 
. . . . . . 7
 | |
| 25 | eqid 2196 | 
. . . . . . 7
 | |
| 26 | eqid 2196 | 
. . . . . . 7
 | |
| 27 | eqid 2196 | 
. . . . . . 7
 | |
| 28 | 24, 25, 26, 27 | grplinv 13182 | 
. . . . . 6
 | 
| 29 | 21, 23, 28 | syl2an2r 595 | 
. . . . 5
 | 
| 30 | 21, 1, 2, 22, 7 | grpidssd 13208 | 
. . . . . 6
 | 
| 31 | 30 | adantr 276 | 
. . . . 5
 | 
| 32 | 29, 31 | eqtr2d 2230 | 
. . . 4
 | 
| 33 | 16, 20, 32 | 3eqtrd 2233 | 
. . 3
 | 
| 34 | 21 | adantr 276 | 
. . . 4
 | 
| 35 | 22 | adantr 276 | 
. . . . 5
 | 
| 36 | 35, 5 | sseldd 3184 | 
. . . 4
 | 
| 37 | 24, 27 | grpinvcl 13180 | 
. . . . 5
 | 
| 38 | 21, 23, 37 | syl2an2r 595 | 
. . . 4
 | 
| 39 | 24, 25 | grprcan 13169 | 
. . . 4
 | 
| 40 | 34, 36, 38, 23, 39 | syl13anc 1251 | 
. . 3
 | 
| 41 | 33, 40 | mpbid 147 | 
. 2
 | 
| 42 | 41 | ex 115 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 | 
| This theorem is referenced by: grpissubg 13324 | 
| Copyright terms: Public domain | W3C validator |