| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvssd | Unicode version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpidssd.m |
|
| grpidssd.s |
|
| grpidssd.b |
|
| grpidssd.c |
|
| grpidssd.o |
|
| Ref | Expression |
|---|---|
| grpinvssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidssd.s |
. . . . . 6
| |
| 2 | grpidssd.b |
. . . . . . 7
| |
| 3 | eqid 2204 |
. . . . . . 7
| |
| 4 | 2, 3 | grpinvcl 13322 |
. . . . . 6
|
| 5 | 1, 4 | sylan 283 |
. . . . 5
|
| 6 | simpr 110 |
. . . . 5
| |
| 7 | grpidssd.o |
. . . . . 6
| |
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | oveq1 5950 |
. . . . . . 7
| |
| 10 | oveq1 5950 |
. . . . . . 7
| |
| 11 | 9, 10 | eqeq12d 2219 |
. . . . . 6
|
| 12 | oveq2 5951 |
. . . . . . 7
| |
| 13 | oveq2 5951 |
. . . . . . 7
| |
| 14 | 12, 13 | eqeq12d 2219 |
. . . . . 6
|
| 15 | 11, 14 | rspc2va 2890 |
. . . . 5
|
| 16 | 5, 6, 8, 15 | syl21anc 1248 |
. . . 4
|
| 17 | eqid 2204 |
. . . . . 6
| |
| 18 | eqid 2204 |
. . . . . 6
| |
| 19 | 2, 17, 18, 3 | grplinv 13324 |
. . . . 5
|
| 20 | 1, 19 | sylan 283 |
. . . 4
|
| 21 | grpidssd.m |
. . . . . 6
| |
| 22 | grpidssd.c |
. . . . . . 7
| |
| 23 | 22 | sselda 3192 |
. . . . . 6
|
| 24 | eqid 2204 |
. . . . . . 7
| |
| 25 | eqid 2204 |
. . . . . . 7
| |
| 26 | eqid 2204 |
. . . . . . 7
| |
| 27 | eqid 2204 |
. . . . . . 7
| |
| 28 | 24, 25, 26, 27 | grplinv 13324 |
. . . . . 6
|
| 29 | 21, 23, 28 | syl2an2r 595 |
. . . . 5
|
| 30 | 21, 1, 2, 22, 7 | grpidssd 13350 |
. . . . . 6
|
| 31 | 30 | adantr 276 |
. . . . 5
|
| 32 | 29, 31 | eqtr2d 2238 |
. . . 4
|
| 33 | 16, 20, 32 | 3eqtrd 2241 |
. . 3
|
| 34 | 21 | adantr 276 |
. . . 4
|
| 35 | 22 | adantr 276 |
. . . . 5
|
| 36 | 35, 5 | sseldd 3193 |
. . . 4
|
| 37 | 24, 27 | grpinvcl 13322 |
. . . . 5
|
| 38 | 21, 23, 37 | syl2an2r 595 |
. . . 4
|
| 39 | 24, 25 | grprcan 13311 |
. . . 4
|
| 40 | 34, 36, 38, 23, 39 | syl13anc 1251 |
. . 3
|
| 41 | 33, 40 | mpbid 147 |
. 2
|
| 42 | 41 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 |
| This theorem is referenced by: grpissubg 13472 |
| Copyright terms: Public domain | W3C validator |