ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scafeqg Unicode version

Theorem scafeqg 13804
Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scafeqg  |-  ( ( W  e.  V  /\  .x. 
Fn  ( K  X.  B ) )  ->  .xb  =  .x.  )

Proof of Theorem scafeqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . 4  |-  B  =  ( Base `  W
)
2 scaffval.f . . . 4  |-  F  =  (Scalar `  W )
3 scaffval.k . . . 4  |-  K  =  ( Base `  F
)
4 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
5 scaffval.s . . . 4  |-  .x.  =  ( .s `  W )
61, 2, 3, 4, 5scaffvalg 13802 . . 3  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
76adantr 276 . 2  |-  ( ( W  e.  V  /\  .x. 
Fn  ( K  X.  B ) )  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
8 fnovim 6027 . . 3  |-  (  .x.  Fn  ( K  X.  B
)  ->  .x.  =  ( x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) ) )
98adantl 277 . 2  |-  ( ( W  e.  V  /\  .x. 
Fn  ( K  X.  B ) )  ->  .x.  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
107, 9eqtr4d 2229 1  |-  ( ( W  e.  V  /\  .x. 
Fn  ( K  X.  B ) )  ->  .xb  =  .x.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    X. cxp 4657    Fn wfn 5249   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   Basecbs 12618  Scalarcsca 12698   .scvsca 12699   .sfcscaf 13784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-ndx 12621  df-slot 12622  df-base 12624  df-sca 12711  df-scaf 13786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator