ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scafvalg Unicode version

Theorem scafvalg 13648
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scafvalg  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  ( X  .xb  Y
)  =  ( X 
.x.  Y ) )

Proof of Theorem scafvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . 4  |-  B  =  ( Base `  W
)
2 scaffval.f . . . 4  |-  F  =  (Scalar `  W )
3 scaffval.k . . . 4  |-  K  =  ( Base `  F
)
4 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
5 scaffval.s . . . 4  |-  .x.  =  ( .s `  W )
61, 2, 3, 4, 5scaffvalg 13647 . . 3  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
763ad2ant1 1020 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  -> 
.xb  =  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) ) )
8 oveq12 5909 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .x.  y
)  =  ( X 
.x.  Y ) )
98adantl 277 . 2  |-  ( ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .x.  y
)  =  ( X 
.x.  Y ) )
10 simp2 1000 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  X  e.  K )
11 simp3 1001 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  Y  e.  B )
12 vscaslid 12685 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
1312slotex 12550 . . . . 5  |-  ( W  e.  V  ->  ( .s `  W )  e. 
_V )
145, 13eqeltrid 2276 . . . 4  |-  ( W  e.  V  ->  .x.  e.  _V )
15143ad2ant1 1020 . . 3  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  .x.  e.  _V )
16 ovexg 5934 . . 3  |-  ( ( X  e.  K  /\  .x. 
e.  _V  /\  Y  e.  B )  ->  ( X  .x.  Y )  e. 
_V )
1710, 15, 11, 16syl3anc 1249 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  ( X  .x.  Y
)  e.  _V )
187, 9, 10, 11, 17ovmpod 6028 1  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  ( X  .xb  Y
)  =  ( X 
.x.  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   _Vcvv 2752   ` cfv 5238  (class class class)co 5900    e. cmpo 5902   Basecbs 12523  Scalarcsca 12603   .scvsca 12604   .sfcscaf 13629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-5 9016  df-6 9017  df-ndx 12526  df-slot 12527  df-base 12529  df-sca 12616  df-vsca 12617  df-scaf 13631
This theorem is referenced by:  lmodfopne  13667
  Copyright terms: Public domain W3C validator