ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scafvalg Unicode version

Theorem scafvalg 13806
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scafvalg  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  ( X  .xb  Y
)  =  ( X 
.x.  Y ) )

Proof of Theorem scafvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . 4  |-  B  =  ( Base `  W
)
2 scaffval.f . . . 4  |-  F  =  (Scalar `  W )
3 scaffval.k . . . 4  |-  K  =  ( Base `  F
)
4 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
5 scaffval.s . . . 4  |-  .x.  =  ( .s `  W )
61, 2, 3, 4, 5scaffvalg 13805 . . 3  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
763ad2ant1 1020 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  -> 
.xb  =  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) ) )
8 oveq12 5928 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .x.  y
)  =  ( X 
.x.  Y ) )
98adantl 277 . 2  |-  ( ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .x.  y
)  =  ( X 
.x.  Y ) )
10 simp2 1000 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  X  e.  K )
11 simp3 1001 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  Y  e.  B )
12 vscaslid 12783 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
1312slotex 12648 . . . . 5  |-  ( W  e.  V  ->  ( .s `  W )  e. 
_V )
145, 13eqeltrid 2280 . . . 4  |-  ( W  e.  V  ->  .x.  e.  _V )
15143ad2ant1 1020 . . 3  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  .x.  e.  _V )
16 ovexg 5953 . . 3  |-  ( ( X  e.  K  /\  .x. 
e.  _V  /\  Y  e.  B )  ->  ( X  .x.  Y )  e. 
_V )
1710, 15, 11, 16syl3anc 1249 . 2  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  ( X  .x.  Y
)  e.  _V )
187, 9, 10, 11, 17ovmpod 6047 1  |-  ( ( W  e.  V  /\  X  e.  K  /\  Y  e.  B )  ->  ( X  .xb  Y
)  =  ( X 
.x.  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   Basecbs 12621  Scalarcsca 12701   .scvsca 12702   .sfcscaf 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sca 12714  df-vsca 12715  df-scaf 13789
This theorem is referenced by:  lmodfopne  13825
  Copyright terms: Public domain W3C validator