ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scafeqg GIF version

Theorem scafeqg 14070
Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scafeqg ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = · )

Proof of Theorem scafeqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . 4 𝐵 = (Base‘𝑊)
2 scaffval.f . . . 4 𝐹 = (Scalar‘𝑊)
3 scaffval.k . . . 4 𝐾 = (Base‘𝐹)
4 scaffval.a . . . 4 = ( ·sf𝑊)
5 scaffval.s . . . 4 · = ( ·𝑠𝑊)
61, 2, 3, 4, 5scaffvalg 14068 . . 3 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
76adantr 276 . 2 ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
8 fnovim 6054 . . 3 ( · Fn (𝐾 × 𝐵) → · = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
98adantl 277 . 2 ((𝑊𝑉· Fn (𝐾 × 𝐵)) → · = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
107, 9eqtr4d 2241 1 ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = · )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176   × cxp 4673   Fn wfn 5266  cfv 5271  (class class class)co 5944  cmpo 5946  Basecbs 12832  Scalarcsca 12912   ·𝑠 cvsca 12913   ·sf cscaf 14050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-ndx 12835  df-slot 12836  df-base 12838  df-sca 12925  df-scaf 14052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator