ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scafeqg GIF version

Theorem scafeqg 13621
Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scafeqg ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = · )

Proof of Theorem scafeqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . 4 𝐵 = (Base‘𝑊)
2 scaffval.f . . . 4 𝐹 = (Scalar‘𝑊)
3 scaffval.k . . . 4 𝐾 = (Base‘𝐹)
4 scaffval.a . . . 4 = ( ·sf𝑊)
5 scaffval.s . . . 4 · = ( ·𝑠𝑊)
61, 2, 3, 4, 5scaffvalg 13619 . . 3 (𝑊𝑉 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
76adantr 276 . 2 ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
8 fnovim 6004 . . 3 ( · Fn (𝐾 × 𝐵) → · = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
98adantl 277 . 2 ((𝑊𝑉· Fn (𝐾 × 𝐵)) → · = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
107, 9eqtr4d 2225 1 ((𝑊𝑉· Fn (𝐾 × 𝐵)) → = · )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   × cxp 4642   Fn wfn 5230  cfv 5235  (class class class)co 5895  cmpo 5897  Basecbs 12511  Scalarcsca 12589   ·𝑠 cvsca 12590   ·sf cscaf 13601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-ndx 12514  df-slot 12515  df-base 12517  df-sca 12602  df-scaf 13603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator