![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > scafeqg | GIF version |
Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | ⊢ 𝐵 = (Base‘𝑊) |
scaffval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
scaffval.k | ⊢ 𝐾 = (Base‘𝐹) |
scaffval.a | ⊢ ∙ = ( ·sf ‘𝑊) |
scaffval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
scafeqg | ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
2 | scaffval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | scaffval.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
4 | scaffval.a | . . . 4 ⊢ ∙ = ( ·sf ‘𝑊) | |
5 | scaffval.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | 1, 2, 3, 4, 5 | scaffvalg 13619 | . . 3 ⊢ (𝑊 ∈ 𝑉 → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
7 | 6 | adantr 276 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
8 | fnovim 6004 | . . 3 ⊢ ( · Fn (𝐾 × 𝐵) → · = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) | |
9 | 8 | adantl 277 | . 2 ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → · = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦))) |
10 | 7, 9 | eqtr4d 2225 | 1 ⊢ ((𝑊 ∈ 𝑉 ∧ · Fn (𝐾 × 𝐵)) → ∙ = · ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 × cxp 4642 Fn wfn 5230 ‘cfv 5235 (class class class)co 5895 ∈ cmpo 5897 Basecbs 12511 Scalarcsca 12589 ·𝑠 cvsca 12590 ·sf cscaf 13601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7931 ax-resscn 7932 ax-1re 7934 ax-addrcl 7937 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-ndx 12514 df-slot 12515 df-base 12517 df-sca 12602 df-scaf 13603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |