ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodring Unicode version

Theorem lmodring 13851
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
lmodring  |-  ( W  e.  LMod  ->  F  e. 
Ring )

Proof of Theorem lmodring
Dummy variables  r  q  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2196 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
3 eqid 2196 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
4 lmodring.1 . . 3  |-  F  =  (Scalar `  W )
5 eqid 2196 . . 3  |-  ( Base `  F )  =  (
Base `  F )
6 eqid 2196 . . 3  |-  ( +g  `  F )  =  ( +g  `  F )
7 eqid 2196 . . 3  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2196 . . 3  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8islmod 13847 . 2  |-  ( W  e.  LMod  <->  ( W  e. 
Grp  /\  F  e.  Ring  /\  A. q  e.  (
Base `  F ) A. r  e.  ( Base `  F ) A. x  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  W ) w )  =  ( ( q ( .s
`  W ) w ) ( +g  `  W
) ( r ( .s `  W ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  W
) w )  =  ( q ( .s
`  W ) ( r ( .s `  W ) w ) )  /\  ( ( 1r `  F ) ( .s `  W
) w )  =  w ) ) ) )
109simp2bi 1015 1  |-  ( W  e.  LMod  ->  F  e. 
Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   Grpcgrp 13132   1rcur 13515   Ringcrg 13552   LModclmod 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-lmod 13845
This theorem is referenced by:  lmodfgrp  13852  lmodmcl  13856  lmod0cl  13870  lmod1cl  13871  lmod0vs  13877  lmodvs0  13878  lmodvsmmulgdi  13879  lmodvsneg  13887  lmodsubvs  13899  lmodsubdi  13900  lmodsubdir  13901  lssvnegcl  13932  islss3  13935
  Copyright terms: Public domain W3C validator