ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodring Unicode version

Theorem lmodring 13975
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
lmodring  |-  ( W  e.  LMod  ->  F  e. 
Ring )

Proof of Theorem lmodring
Dummy variables  r  q  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2204 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
3 eqid 2204 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
4 lmodring.1 . . 3  |-  F  =  (Scalar `  W )
5 eqid 2204 . . 3  |-  ( Base `  F )  =  (
Base `  F )
6 eqid 2204 . . 3  |-  ( +g  `  F )  =  ( +g  `  F )
7 eqid 2204 . . 3  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2204 . . 3  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8islmod 13971 . 2  |-  ( W  e.  LMod  <->  ( W  e. 
Grp  /\  F  e.  Ring  /\  A. q  e.  (
Base `  F ) A. r  e.  ( Base `  F ) A. x  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  W ) w )  =  ( ( q ( .s
`  W ) w ) ( +g  `  W
) ( r ( .s `  W ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  W
) w )  =  ( q ( .s
`  W ) ( r ( .s `  W ) w ) )  /\  ( ( 1r `  F ) ( .s `  W
) w )  =  w ) ) ) )
109simp2bi 1015 1  |-  ( W  e.  LMod  ->  F  e. 
Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   ` cfv 5268  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   .rcmulr 12829  Scalarcsca 12831   .scvsca 12832   Grpcgrp 13250   1rcur 13639   Ringcrg 13676   LModclmod 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-mulr 12842  df-sca 12844  df-vsca 12845  df-lmod 13969
This theorem is referenced by:  lmodfgrp  13976  lmodmcl  13980  lmod0cl  13994  lmod1cl  13995  lmod0vs  14001  lmodvs0  14002  lmodvsmmulgdi  14003  lmodvsneg  14011  lmodsubvs  14023  lmodsubdi  14024  lmodsubdir  14025  lssvnegcl  14056  islss3  14059
  Copyright terms: Public domain W3C validator