ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodring Unicode version

Theorem lmodring 14142
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
lmodring  |-  ( W  e.  LMod  ->  F  e. 
Ring )

Proof of Theorem lmodring
Dummy variables  r  q  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2206 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
3 eqid 2206 . . 3  |-  ( .s
`  W )  =  ( .s `  W
)
4 lmodring.1 . . 3  |-  F  =  (Scalar `  W )
5 eqid 2206 . . 3  |-  ( Base `  F )  =  (
Base `  F )
6 eqid 2206 . . 3  |-  ( +g  `  F )  =  ( +g  `  F )
7 eqid 2206 . . 3  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2206 . . 3  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8islmod 14138 . 2  |-  ( W  e.  LMod  <->  ( W  e. 
Grp  /\  F  e.  Ring  /\  A. q  e.  (
Base `  F ) A. r  e.  ( Base `  F ) A. x  e.  ( Base `  W ) A. w  e.  ( Base `  W
) ( ( ( r ( .s `  W ) w )  e.  ( Base `  W
)  /\  ( r
( .s `  W
) ( w ( +g  `  W ) x ) )  =  ( ( r ( .s `  W ) w ) ( +g  `  W ) ( r ( .s `  W
) x ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  W ) w )  =  ( ( q ( .s
`  W ) w ) ( +g  `  W
) ( r ( .s `  W ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  W
) w )  =  ( q ( .s
`  W ) ( r ( .s `  W ) w ) )  /\  ( ( 1r `  F ) ( .s `  W
) w )  =  w ) ) ) )
109simp2bi 1016 1  |-  ( W  e.  LMod  ->  F  e. 
Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5285  (class class class)co 5962   Basecbs 12917   +g cplusg 12994   .rcmulr 12995  Scalarcsca 12997   .scvsca 12998   Grpcgrp 13417   1rcur 13806   Ringcrg 13843   LModclmod 14134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-mulr 13008  df-sca 13010  df-vsca 13011  df-lmod 14136
This theorem is referenced by:  lmodfgrp  14143  lmodmcl  14147  lmod0cl  14161  lmod1cl  14162  lmod0vs  14168  lmodvs0  14169  lmodvsmmulgdi  14170  lmodvsneg  14178  lmodsubvs  14190  lmodsubdi  14191  lmodsubdir  14192  lssvnegcl  14223  islss3  14226
  Copyright terms: Public domain W3C validator