ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgmgp Unicode version

Theorem srgmgp 13701
Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Hypothesis
Ref Expression
srgmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
srgmgp  |-  ( R  e. SRing  ->  G  e.  Mnd )

Proof of Theorem srgmgp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 srgmgp.g . . 3  |-  G  =  (mulGrp `  R )
3 eqid 2204 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2204 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2204 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
61, 2, 3, 4, 5issrg 13698 . 2  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  G  e.  Mnd  /\  A. x  e.  ( Base `  R ) ( A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) ) )
76simp2bi 1015 1  |-  ( R  e. SRing  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   A.wral 2483   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   .rcmulr 12881   0gc0g 13059   Mndcmnd 13219  CMndccmn 13591  mulGrpcmgp 13653  SRingcsrg 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mulr 12894  df-0g 13061  df-srg 13697
This theorem is referenced by:  srgcl  13703  srgass  13704  srgideu  13705  srgidcl  13709  srgidmlem  13711  srg1zr  13720  srgpcomp  13723  srgpcompp  13724  srgpcomppsc  13725  srg1expzeq1  13728
  Copyright terms: Public domain W3C validator