ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemloc Unicode version

Theorem cauappcvgprlemloc 7736
Description: Lemma for cauappcvgpr 7746. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemloc  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemloc
Dummy variables  f  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7493 . . . . 5  |-  ( s 
<Q  r  ->  E. y  e.  Q.  ( s  +Q  y )  =  r )
21adantl 277 . . . 4  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  E. y  e.  Q.  ( s  +Q  y )  =  r )
3 subhalfnqq 7498 . . . . . 6  |-  ( y  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  y
)
43ad2antrl 490 . . . . 5  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  E. x  e.  Q.  ( x  +Q  x
)  <Q  y )
5 simprr 531 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
x  +Q  x ) 
<Q  y )
6 simplrl 535 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  s  e.  Q. )
76adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  s  e.  Q. )
87adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  s  e.  Q. )
9 ltanqi 7486 . . . . . . . . 9  |-  ( ( ( x  +Q  x
)  <Q  y  /\  s  e.  Q. )  ->  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( s  +Q  y
) )
105, 8, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( s  +Q  y
) )
11 simplrr 536 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  y )  =  r )
1210, 11breqtrd 4060 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  ( x  +Q  x ) ) 
<Q  r )
13 simprl 529 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  x  e.  Q. )
14 addclnq 7459 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  x  e.  Q. )  ->  ( x  +Q  x
)  e.  Q. )
1513, 13, 14syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
x  +Q  x )  e.  Q. )
16 addclnq 7459 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  ( x  +Q  x
)  e.  Q. )  ->  ( s  +Q  (
x  +Q  x ) )  e.  Q. )
178, 15, 16syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  ( x  +Q  x ) )  e.  Q. )
18 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  r  e.  Q. )
1918adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  r  e.  Q. )
2019adantr 276 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  r  e.  Q. )
21 cauappcvgpr.f . . . . . . . . . . 11  |-  ( ph  ->  F : Q. --> Q. )
2221ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  F : Q. --> Q. )
2322, 13ffvelcdmd 5701 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  ( F `  x )  e.  Q. )
24 addclnq 7459 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  Q.  /\  x  e.  Q. )  ->  ( ( F `  x )  +Q  x
)  e.  Q. )
2523, 13, 24syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( F `  x
)  +Q  x )  e.  Q. )
26 ltsonq 7482 . . . . . . . . 9  |-  <Q  Or  Q.
27 sowlin 4356 . . . . . . . . 9  |-  ( ( 
<Q  Or  Q.  /\  (
( s  +Q  (
x  +Q  x ) )  e.  Q.  /\  r  e.  Q.  /\  (
( F `  x
)  +Q  x )  e.  Q. ) )  ->  ( ( s  +Q  ( x  +Q  x ) )  <Q 
r  ->  ( (
s  +Q  ( x  +Q  x ) ) 
<Q  ( ( F `  x )  +Q  x
)  \/  ( ( F `  x )  +Q  x )  <Q 
r ) ) )
2826, 27mpan 424 . . . . . . . 8  |-  ( ( ( s  +Q  (
x  +Q  x ) )  e.  Q.  /\  r  e.  Q.  /\  (
( F `  x
)  +Q  x )  e.  Q. )  -> 
( ( s  +Q  ( x  +Q  x
) )  <Q  r  ->  ( ( s  +Q  ( x  +Q  x
) )  <Q  (
( F `  x
)  +Q  x )  \/  ( ( F `
 x )  +Q  x )  <Q  r
) ) )
2917, 20, 25, 28syl3anc 1249 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( s  +Q  (
x  +Q  x ) )  <Q  r  ->  ( ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x )  \/  (
( F `  x
)  +Q  x ) 
<Q  r ) ) )
3012, 29mpd 13 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x )  \/  (
( F `  x
)  +Q  x ) 
<Q  r ) )
318adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
s  e.  Q. )
32 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  ->  x  e.  Q. )
33 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )
34 addassnqg 7466 . . . . . . . . . . . . . 14  |-  ( ( s  e.  Q.  /\  x  e.  Q.  /\  x  e.  Q. )  ->  (
( s  +Q  x
)  +Q  x )  =  ( s  +Q  ( x  +Q  x
) ) )
3531, 32, 32, 34syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( s  +Q  x )  +Q  x
)  =  ( s  +Q  ( x  +Q  x ) ) )
3635breq1d 4044 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( ( s  +Q  x )  +Q  x )  <Q  (
( F `  x
)  +Q  x )  <-> 
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) ) )
3733, 36mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( s  +Q  x )  +Q  x
)  <Q  ( ( F `
 x )  +Q  x ) )
38 ltanqg 7484 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3938adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( ( F `  x )  +Q  x
) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
40 addclnq 7459 . . . . . . . . . . . . 13  |-  ( ( s  e.  Q.  /\  x  e.  Q. )  ->  ( s  +Q  x
)  e.  Q. )
4131, 32, 40syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( s  +Q  x
)  e.  Q. )
4223adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( F `  x
)  e.  Q. )
43 addcomnqg 7465 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4443adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( ( F `  x )  +Q  x
) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4539, 41, 42, 32, 44caovord2d 6097 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( s  +Q  x )  <Q  ( F `  x )  <->  ( ( s  +Q  x
)  +Q  x ) 
<Q  ( ( F `  x )  +Q  x
) ) )
4637, 45mpbird 167 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( s  +Q  x
)  <Q  ( F `  x ) )
47 oveq2 5933 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
s  +Q  q )  =  ( s  +Q  x ) )
48 fveq2 5561 . . . . . . . . . . . 12  |-  ( q  =  x  ->  ( F `  q )  =  ( F `  x ) )
4947, 48breq12d 4047 . . . . . . . . . . 11  |-  ( q  =  x  ->  (
( s  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  x )  <Q  ( F `  x )
) )
5049rspcev 2868 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  ( s  +Q  x
)  <Q  ( F `  x ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
5132, 46, 50syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
52 oveq1 5932 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
5352breq1d 4044 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
5453rexbidv 2498 . . . . . . . . . 10  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
55 cauappcvgpr.lim . . . . . . . . . . . 12  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
5655fveq2i 5564 . . . . . . . . . . 11  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
57 nqex 7447 . . . . . . . . . . . . 13  |-  Q.  e.  _V
5857rabex 4178 . . . . . . . . . . . 12  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
5957rabex 4178 . . . . . . . . . . . 12  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
6058, 59op1st 6213 . . . . . . . . . . 11  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
6156, 60eqtri 2217 . . . . . . . . . 10  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
6254, 61elrab2 2923 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
6331, 51, 62sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
s  e.  ( 1st `  L ) )
6463ex 115 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x )  ->  s  e.  ( 1st `  L
) ) )
6520adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( ( F `  x )  +Q  x
)  <Q  r )  -> 
r  e.  Q. )
66 id 19 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  q  =  x )
6748, 66oveq12d 5943 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
( F `  q
)  +Q  q )  =  ( ( F `
 x )  +Q  x ) )
6867breq1d 4044 . . . . . . . . . . 11  |-  ( q  =  x  ->  (
( ( F `  q )  +Q  q
)  <Q  r  <->  ( ( F `  x )  +Q  x )  <Q  r
) )
6968rspcev 2868 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  ( ( F `  x )  +Q  x
)  <Q  r )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  r )
7013, 69sylan 283 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( ( F `  x )  +Q  x
)  <Q  r )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  r )
71 breq2 4038 . . . . . . . . . . 11  |-  ( u  =  r  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  r
) )
7271rexbidv 2498 . . . . . . . . . 10  |-  ( u  =  r  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  r
) )
7355fveq2i 5564 . . . . . . . . . . 11  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
7458, 59op2nd 6214 . . . . . . . . . . 11  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
7573, 74eqtri 2217 . . . . . . . . . 10  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
7672, 75elrab2 2923 . . . . . . . . 9  |-  ( r  e.  ( 2nd `  L
)  <->  ( r  e. 
Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  r
) )
7765, 70, 76sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( ( F `  x )  +Q  x
)  <Q  r )  -> 
r  e.  ( 2nd `  L ) )
7877ex 115 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( ( F `  x )  +Q  x
)  <Q  r  ->  r  e.  ( 2nd `  L
) ) )
7964, 78orim12d 787 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( ( s  +Q  ( x  +Q  x
) )  <Q  (
( F `  x
)  +Q  x )  \/  ( ( F `
 x )  +Q  x )  <Q  r
)  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) )
8030, 79mpd 13 . . . . 5  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) )
814, 80rexlimddv 2619 . . . 4  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) )
822, 81rexlimddv 2619 . . 3  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) )
8382ex 115 . 2  |-  ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  -> 
( s  <Q  r  ->  ( s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
8483ralrimivva 2579 1  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   <.cop 3626   class class class wbr 4034    Or wor 4331   -->wf 5255   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366    <Q cltq 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437
This theorem is referenced by:  cauappcvgprlemcl  7737
  Copyright terms: Public domain W3C validator