ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaword Unicode version

Theorem nnaword 6479
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )

Proof of Theorem nnaword
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5849 . . . . . . 7  |-  ( x  =  C  ->  (
x  +o  A )  =  ( C  +o  A ) )
2 oveq1 5849 . . . . . . 7  |-  ( x  =  C  ->  (
x  +o  B )  =  ( C  +o  B ) )
31, 2sseq12d 3173 . . . . . 6  |-  ( x  =  C  ->  (
( x  +o  A
)  C_  ( x  +o  B )  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
43bibi2d 231 . . . . 5  |-  ( x  =  C  ->  (
( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) ) )
54imbi2d 229 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( x  +o  A )  C_  (
x  +o  B ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) ) ) )
6 oveq1 5849 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  +o  A )  =  ( (/)  +o  A
) )
7 oveq1 5849 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  +o  B )  =  ( (/)  +o  B
) )
86, 7sseq12d 3173 . . . . . 6  |-  ( x  =  (/)  ->  ( ( x  +o  A ) 
C_  ( x  +o  B )  <->  ( (/)  +o  A
)  C_  ( (/)  +o  B
) ) )
98bibi2d 231 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  C_  B  <->  ( x  +o  A )  C_  (
x  +o  B ) )  <->  ( A  C_  B 
<->  ( (/)  +o  A
)  C_  ( (/)  +o  B
) ) ) )
10 oveq1 5849 . . . . . . 7  |-  ( x  =  y  ->  (
x  +o  A )  =  ( y  +o  A ) )
11 oveq1 5849 . . . . . . 7  |-  ( x  =  y  ->  (
x  +o  B )  =  ( y  +o  B ) )
1210, 11sseq12d 3173 . . . . . 6  |-  ( x  =  y  ->  (
( x  +o  A
)  C_  ( x  +o  B )  <->  ( y  +o  A )  C_  (
y  +o  B ) ) )
1312bibi2d 231 . . . . 5  |-  ( x  =  y  ->  (
( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( y  +o  A )  C_  (
y  +o  B ) ) ) )
14 oveq1 5849 . . . . . . 7  |-  ( x  =  suc  y  -> 
( x  +o  A
)  =  ( suc  y  +o  A ) )
15 oveq1 5849 . . . . . . 7  |-  ( x  =  suc  y  -> 
( x  +o  B
)  =  ( suc  y  +o  B ) )
1614, 15sseq12d 3173 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( x  +o  A )  C_  (
x  +o  B )  <-> 
( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
1716bibi2d 231 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  C_  B 
<->  ( x  +o  A
)  C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) ) )
18 nna0r 6446 . . . . . . . 8  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
1918eqcomd 2171 . . . . . . 7  |-  ( A  e.  om  ->  A  =  ( (/)  +o  A
) )
2019adantr 274 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  =  ( (/)  +o  A ) )
21 nna0r 6446 . . . . . . . 8  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  B )
2221eqcomd 2171 . . . . . . 7  |-  ( B  e.  om  ->  B  =  ( (/)  +o  B
) )
2322adantl 275 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  =  ( (/)  +o  B ) )
2420, 23sseq12d 3173 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  (
(/)  +o  A )  C_  ( (/)  +o  B
) ) )
25 nnacl 6448 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( y  +o  A
)  e.  om )
26253adant3 1007 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
y  +o  A )  e.  om )
27 nnacl 6448 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( y  +o  B
)  e.  om )
28273adant2 1006 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
y  +o  B )  e.  om )
29 nnsucsssuc 6460 . . . . . . . . . 10  |-  ( ( ( y  +o  A
)  e.  om  /\  ( y  +o  B
)  e.  om )  ->  ( ( y  +o  A )  C_  (
y  +o  B )  <->  suc  ( y  +o  A
)  C_  suc  ( y  +o  B ) ) )
3026, 28, 29syl2anc 409 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( y  +o  A
)  C_  ( y  +o  B )  <->  suc  ( y  +o  A )  C_  suc  ( y  +o  B
) ) )
31 nnasuc 6444 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
32 peano2 4572 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  suc  y  e.  om )
33 nnacom 6452 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  suc  y  e.  om )  ->  ( A  +o  suc  y )  =  ( suc  y  +o  A
) )
3432, 33sylan2 284 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  ( suc  y  +o  A
) )
35 nnacom 6452 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  y
)  =  ( y  +o  A ) )
36 suceq 4380 . . . . . . . . . . . . . 14  |-  ( ( A  +o  y )  =  ( y  +o  A )  ->  suc  ( A  +o  y
)  =  suc  (
y  +o  A ) )
3735, 36syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( A  +o  y )  =  suc  ( y  +o  A
) )
3831, 34, 373eqtr3rd 2207 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( y  +o  A )  =  ( suc  y  +o  A
) )
3938ancoms 266 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A  e.  om )  ->  suc  ( y  +o  A )  =  ( suc  y  +o  A
) )
40393adant3 1007 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  A
)  =  ( suc  y  +o  A ) )
41 nnasuc 6444 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
42 nnacom 6452 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  suc  y  e.  om )  ->  ( B  +o  suc  y )  =  ( suc  y  +o  B
) )
4332, 42sylan2 284 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  ( suc  y  +o  B
) )
44 nnacom 6452 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  =  ( y  +o  B ) )
45 suceq 4380 . . . . . . . . . . . . . 14  |-  ( ( B  +o  y )  =  ( y  +o  B )  ->  suc  ( B  +o  y
)  =  suc  (
y  +o  B ) )
4644, 45syl 14 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  suc  ( B  +o  y )  =  suc  ( y  +o  B
) )
4741, 43, 463eqtr3rd 2207 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  y  e.  om )  ->  suc  ( y  +o  B )  =  ( suc  y  +o  B
) )
4847ancoms 266 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  B )  =  ( suc  y  +o  B
) )
49483adant2 1006 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  B
)  =  ( suc  y  +o  B ) )
5040, 49sseq12d 3173 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  ( suc  ( y  +o  A
)  C_  suc  ( y  +o  B )  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
5130, 50bitrd 187 . . . . . . . 8  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( y  +o  A
)  C_  ( y  +o  B )  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
5251bibi2d 231 . . . . . . 7  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( A  C_  B  <->  ( y  +o  A ) 
C_  ( y  +o  B ) )  <->  ( A  C_  B  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) ) )
5352biimpd 143 . . . . . 6  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( A  C_  B  <->  ( y  +o  A ) 
C_  ( y  +o  B ) )  -> 
( A  C_  B  <->  ( suc  y  +o  A
)  C_  ( suc  y  +o  B ) ) ) )
54533expib 1196 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  C_  B 
<->  ( y  +o  A
)  C_  ( y  +o  B ) )  -> 
( A  C_  B  <->  ( suc  y  +o  A
)  C_  ( suc  y  +o  B ) ) ) ) )
559, 13, 17, 24, 54finds2 4578 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) ) ) )
565, 55vtoclga 2792 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A ) 
C_  ( C  +o  B ) ) ) )
5756impcom 124 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om )  ->  ( A  C_  B 
<->  ( C  +o  A
)  C_  ( C  +o  B ) ) )
58573impa 1184 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    C_ wss 3116   (/)c0 3409   suc csuc 4343   omcom 4567  (class class class)co 5842    +o coa 6381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388
This theorem is referenced by:  nnacan  6480  nnawordi  6483
  Copyright terms: Public domain W3C validator