ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaword Unicode version

Theorem nnaword 6400
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaword  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )

Proof of Theorem nnaword
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5774 . . . . . . 7  |-  ( x  =  C  ->  (
x  +o  A )  =  ( C  +o  A ) )
2 oveq1 5774 . . . . . . 7  |-  ( x  =  C  ->  (
x  +o  B )  =  ( C  +o  B ) )
31, 2sseq12d 3123 . . . . . 6  |-  ( x  =  C  ->  (
( x  +o  A
)  C_  ( x  +o  B )  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
43bibi2d 231 . . . . 5  |-  ( x  =  C  ->  (
( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) ) )
54imbi2d 229 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( x  +o  A )  C_  (
x  +o  B ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) ) ) )
6 oveq1 5774 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  +o  A )  =  ( (/)  +o  A
) )
7 oveq1 5774 . . . . . . 7  |-  ( x  =  (/)  ->  ( x  +o  B )  =  ( (/)  +o  B
) )
86, 7sseq12d 3123 . . . . . 6  |-  ( x  =  (/)  ->  ( ( x  +o  A ) 
C_  ( x  +o  B )  <->  ( (/)  +o  A
)  C_  ( (/)  +o  B
) ) )
98bibi2d 231 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  C_  B  <->  ( x  +o  A )  C_  (
x  +o  B ) )  <->  ( A  C_  B 
<->  ( (/)  +o  A
)  C_  ( (/)  +o  B
) ) ) )
10 oveq1 5774 . . . . . . 7  |-  ( x  =  y  ->  (
x  +o  A )  =  ( y  +o  A ) )
11 oveq1 5774 . . . . . . 7  |-  ( x  =  y  ->  (
x  +o  B )  =  ( y  +o  B ) )
1210, 11sseq12d 3123 . . . . . 6  |-  ( x  =  y  ->  (
( x  +o  A
)  C_  ( x  +o  B )  <->  ( y  +o  A )  C_  (
y  +o  B ) ) )
1312bibi2d 231 . . . . 5  |-  ( x  =  y  ->  (
( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( y  +o  A )  C_  (
y  +o  B ) ) ) )
14 oveq1 5774 . . . . . . 7  |-  ( x  =  suc  y  -> 
( x  +o  A
)  =  ( suc  y  +o  A ) )
15 oveq1 5774 . . . . . . 7  |-  ( x  =  suc  y  -> 
( x  +o  B
)  =  ( suc  y  +o  B ) )
1614, 15sseq12d 3123 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( x  +o  A )  C_  (
x  +o  B )  <-> 
( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
1716bibi2d 231 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  C_  B 
<->  ( x  +o  A
)  C_  ( x  +o  B ) )  <->  ( A  C_  B  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) ) )
18 nna0r 6367 . . . . . . . 8  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
1918eqcomd 2143 . . . . . . 7  |-  ( A  e.  om  ->  A  =  ( (/)  +o  A
) )
2019adantr 274 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  A  =  ( (/)  +o  A ) )
21 nna0r 6367 . . . . . . . 8  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  B )
2221eqcomd 2143 . . . . . . 7  |-  ( B  e.  om  ->  B  =  ( (/)  +o  B
) )
2322adantl 275 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  B  =  ( (/)  +o  B ) )
2420, 23sseq12d 3123 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  (
(/)  +o  A )  C_  ( (/)  +o  B
) ) )
25 nnacl 6369 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( y  +o  A
)  e.  om )
26253adant3 1001 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
y  +o  A )  e.  om )
27 nnacl 6369 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  ( y  +o  B
)  e.  om )
28273adant2 1000 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
y  +o  B )  e.  om )
29 nnsucsssuc 6381 . . . . . . . . . 10  |-  ( ( ( y  +o  A
)  e.  om  /\  ( y  +o  B
)  e.  om )  ->  ( ( y  +o  A )  C_  (
y  +o  B )  <->  suc  ( y  +o  A
)  C_  suc  ( y  +o  B ) ) )
3026, 28, 29syl2anc 408 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( y  +o  A
)  C_  ( y  +o  B )  <->  suc  ( y  +o  A )  C_  suc  ( y  +o  B
) ) )
31 nnasuc 6365 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
32 peano2 4504 . . . . . . . . . . . . . 14  |-  ( y  e.  om  ->  suc  y  e.  om )
33 nnacom 6373 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  suc  y  e.  om )  ->  ( A  +o  suc  y )  =  ( suc  y  +o  A
) )
3432, 33sylan2 284 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  ( suc  y  +o  A
) )
35 nnacom 6373 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  y
)  =  ( y  +o  A ) )
36 suceq 4319 . . . . . . . . . . . . . 14  |-  ( ( A  +o  y )  =  ( y  +o  A )  ->  suc  ( A  +o  y
)  =  suc  (
y  +o  A ) )
3735, 36syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( A  +o  y )  =  suc  ( y  +o  A
) )
3831, 34, 373eqtr3rd 2179 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( y  +o  A )  =  ( suc  y  +o  A
) )
3938ancoms 266 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  A  e.  om )  ->  suc  ( y  +o  A )  =  ( suc  y  +o  A
) )
40393adant3 1001 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  A
)  =  ( suc  y  +o  A ) )
41 nnasuc 6365 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
42 nnacom 6373 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  suc  y  e.  om )  ->  ( B  +o  suc  y )  =  ( suc  y  +o  B
) )
4332, 42sylan2 284 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  ( suc  y  +o  B
) )
44 nnacom 6373 . . . . . . . . . . . . . 14  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  =  ( y  +o  B ) )
45 suceq 4319 . . . . . . . . . . . . . 14  |-  ( ( B  +o  y )  =  ( y  +o  B )  ->  suc  ( B  +o  y
)  =  suc  (
y  +o  B ) )
4644, 45syl 14 . . . . . . . . . . . . 13  |-  ( ( B  e.  om  /\  y  e.  om )  ->  suc  ( B  +o  y )  =  suc  ( y  +o  B
) )
4741, 43, 463eqtr3rd 2179 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  y  e.  om )  ->  suc  ( y  +o  B )  =  ( suc  y  +o  B
) )
4847ancoms 266 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  B )  =  ( suc  y  +o  B
) )
49483adant2 1000 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  suc  ( y  +o  B
)  =  ( suc  y  +o  B ) )
5040, 49sseq12d 3123 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  ( suc  ( y  +o  A
)  C_  suc  ( y  +o  B )  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
5130, 50bitrd 187 . . . . . . . 8  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( y  +o  A
)  C_  ( y  +o  B )  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) )
5251bibi2d 231 . . . . . . 7  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( A  C_  B  <->  ( y  +o  A ) 
C_  ( y  +o  B ) )  <->  ( A  C_  B  <->  ( suc  y  +o  A )  C_  ( suc  y  +o  B
) ) ) )
5352biimpd 143 . . . . . 6  |-  ( ( y  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( A  C_  B  <->  ( y  +o  A ) 
C_  ( y  +o  B ) )  -> 
( A  C_  B  <->  ( suc  y  +o  A
)  C_  ( suc  y  +o  B ) ) ) )
54533expib 1184 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  C_  B 
<->  ( y  +o  A
)  C_  ( y  +o  B ) )  -> 
( A  C_  B  <->  ( suc  y  +o  A
)  C_  ( suc  y  +o  B ) ) ) ) )
559, 13, 17, 24, 54finds2 4510 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( x  +o  A ) 
C_  ( x  +o  B ) ) ) )
565, 55vtoclga 2747 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A ) 
C_  ( C  +o  B ) ) ) )
5756impcom 124 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om )  ->  ( A  C_  B 
<->  ( C  +o  A
)  C_  ( C  +o  B ) ) )
58573impa 1176 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A )  C_  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    C_ wss 3066   (/)c0 3358   suc csuc 4282   omcom 4499  (class class class)co 5767    +o coa 6303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310
This theorem is referenced by:  nnacan  6401  nnawordi  6404
  Copyright terms: Public domain W3C validator