ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd GIF version

Theorem strnfvnd 12484
Description: Deduction version of strnfvn 12485. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c 𝐸 = Slot 𝑁
strnfvnd.f (𝜑𝑆𝑉)
strnfvnd.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
strnfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strnfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3 (𝜑𝑆𝑉)
21elexd 2752 . 2 (𝜑𝑆 ∈ V)
3 strnfvnd.n . . 3 (𝜑𝑁 ∈ ℕ)
4 fvexg 5536 . . 3 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑁) ∈ V)
51, 3, 4syl2anc 411 . 2 (𝜑 → (𝑆𝑁) ∈ V)
6 fveq1 5516 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
7 strnfvnd.c . . . 4 𝐸 = Slot 𝑁
8 df-slot 12468 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
97, 8eqtri 2198 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
106, 9fvmptg 5594 . 2 ((𝑆 ∈ V ∧ (𝑆𝑁) ∈ V) → (𝐸𝑆) = (𝑆𝑁))
112, 5, 10syl2anc 411 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2739  cmpt 4066  cfv 5218  cn 8921  Slot cslot 12463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-slot 12468
This theorem is referenced by:  strnfvn  12485  strfvssn  12486  strndxid  12492  strsetsid  12497  strslfvd  12506  strslfv2d  12507  setsslid  12515  setsslnid  12516
  Copyright terms: Public domain W3C validator