![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strnfvnd | GIF version |
Description: Deduction version of strnfvn 11823. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
Ref | Expression |
---|---|
strnfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
strnfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strnfvnd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
strnfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strnfvnd.f | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | 1 | elexd 2670 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
3 | strnfvnd.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | fvexg 5394 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑆‘𝑁) ∈ V) | |
5 | 1, 3, 4 | syl2anc 406 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ∈ V) |
6 | fveq1 5374 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
7 | strnfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
8 | df-slot 11806 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
9 | 7, 8 | eqtri 2135 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
10 | 6, 9 | fvmptg 5451 | . 2 ⊢ ((𝑆 ∈ V ∧ (𝑆‘𝑁) ∈ V) → (𝐸‘𝑆) = (𝑆‘𝑁)) |
11 | 2, 5, 10 | syl2anc 406 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ↦ cmpt 3949 ‘cfv 5081 ℕcn 8630 Slot cslot 11801 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-iota 5046 df-fun 5083 df-fv 5089 df-slot 11806 |
This theorem is referenced by: strnfvn 11823 strfvssn 11824 strndxid 11830 strsetsid 11835 strslfvd 11843 strslfv2d 11844 setsslid 11852 setsslnid 11853 ressid 11863 |
Copyright terms: Public domain | W3C validator |