Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strnfvnd | GIF version |
Description: Deduction version of strnfvn 12437. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
Ref | Expression |
---|---|
strnfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
strnfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strnfvnd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
strnfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strnfvnd.f | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | 1 | elexd 2743 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
3 | strnfvnd.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | fvexg 5515 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑆‘𝑁) ∈ V) | |
5 | 1, 3, 4 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ∈ V) |
6 | fveq1 5495 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
7 | strnfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
8 | df-slot 12420 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
9 | 7, 8 | eqtri 2191 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
10 | 6, 9 | fvmptg 5572 | . 2 ⊢ ((𝑆 ∈ V ∧ (𝑆‘𝑁) ∈ V) → (𝐸‘𝑆) = (𝑆‘𝑁)) |
11 | 2, 5, 10 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ↦ cmpt 4050 ‘cfv 5198 ℕcn 8878 Slot cslot 12415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fv 5206 df-slot 12420 |
This theorem is referenced by: strnfvn 12437 strfvssn 12438 strndxid 12444 strsetsid 12449 strslfvd 12457 strslfv2d 12458 setsslid 12466 setsslnid 12467 ressid 12479 |
Copyright terms: Public domain | W3C validator |