| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strnfvnd | GIF version | ||
| Description: Deduction version of strnfvn 12795. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
| Ref | Expression |
|---|---|
| strnfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
| strnfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strnfvnd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| strnfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strnfvnd.f | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | 1 | elexd 2784 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 3 | strnfvnd.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | fvexg 5594 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑆‘𝑁) ∈ V) | |
| 5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ∈ V) |
| 6 | fveq1 5574 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
| 7 | strnfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 8 | df-slot 12778 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
| 9 | 7, 8 | eqtri 2225 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
| 10 | 6, 9 | fvmptg 5654 | . 2 ⊢ ((𝑆 ∈ V ∧ (𝑆‘𝑁) ∈ V) → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 11 | 2, 5, 10 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ↦ cmpt 4104 ‘cfv 5270 ℕcn 9035 Slot cslot 12773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fv 5278 df-slot 12778 |
| This theorem is referenced by: strnfvn 12795 strfvssn 12796 strndxid 12802 strsetsid 12807 strslfvd 12816 strslfv2d 12817 setsslid 12825 setsslnid 12826 basm 12835 edgfndxid 15550 |
| Copyright terms: Public domain | W3C validator |