ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd GIF version

Theorem strnfvnd 11822
Description: Deduction version of strnfvn 11823. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c 𝐸 = Slot 𝑁
strnfvnd.f (𝜑𝑆𝑉)
strnfvnd.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
strnfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strnfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3 (𝜑𝑆𝑉)
21elexd 2670 . 2 (𝜑𝑆 ∈ V)
3 strnfvnd.n . . 3 (𝜑𝑁 ∈ ℕ)
4 fvexg 5394 . . 3 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑁) ∈ V)
51, 3, 4syl2anc 406 . 2 (𝜑 → (𝑆𝑁) ∈ V)
6 fveq1 5374 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
7 strnfvnd.c . . . 4 𝐸 = Slot 𝑁
8 df-slot 11806 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
97, 8eqtri 2135 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
106, 9fvmptg 5451 . 2 ((𝑆 ∈ V ∧ (𝑆𝑁) ∈ V) → (𝐸𝑆) = (𝑆𝑁))
112, 5, 10syl2anc 406 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  Vcvv 2657  cmpt 3949  cfv 5081  cn 8630  Slot cslot 11801
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-iota 5046  df-fun 5083  df-fv 5089  df-slot 11806
This theorem is referenced by:  strnfvn  11823  strfvssn  11824  strndxid  11830  strsetsid  11835  strslfvd  11843  strslfv2d  11844  setsslid  11852  setsslnid  11853  ressid  11863
  Copyright terms: Public domain W3C validator