ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd GIF version

Theorem strnfvnd 12641
Description: Deduction version of strnfvn 12642. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c 𝐸 = Slot 𝑁
strnfvnd.f (𝜑𝑆𝑉)
strnfvnd.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
strnfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strnfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3 (𝜑𝑆𝑉)
21elexd 2773 . 2 (𝜑𝑆 ∈ V)
3 strnfvnd.n . . 3 (𝜑𝑁 ∈ ℕ)
4 fvexg 5574 . . 3 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑁) ∈ V)
51, 3, 4syl2anc 411 . 2 (𝜑 → (𝑆𝑁) ∈ V)
6 fveq1 5554 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
7 strnfvnd.c . . . 4 𝐸 = Slot 𝑁
8 df-slot 12625 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
97, 8eqtri 2214 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
106, 9fvmptg 5634 . 2 ((𝑆 ∈ V ∧ (𝑆𝑁) ∈ V) → (𝐸𝑆) = (𝑆𝑁))
112, 5, 10syl2anc 411 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cmpt 4091  cfv 5255  cn 8984  Slot cslot 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-slot 12625
This theorem is referenced by:  strnfvn  12642  strfvssn  12643  strndxid  12649  strsetsid  12654  strslfvd  12663  strslfv2d  12664  setsslid  12672  setsslnid  12673  basm  12682
  Copyright terms: Public domain W3C validator