ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd GIF version

Theorem strnfvnd 13047
Description: Deduction version of strnfvn 13048. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c 𝐸 = Slot 𝑁
strnfvnd.f (𝜑𝑆𝑉)
strnfvnd.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
strnfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strnfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3 (𝜑𝑆𝑉)
21elexd 2813 . 2 (𝜑𝑆 ∈ V)
3 strnfvnd.n . . 3 (𝜑𝑁 ∈ ℕ)
4 fvexg 5645 . . 3 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑁) ∈ V)
51, 3, 4syl2anc 411 . 2 (𝜑 → (𝑆𝑁) ∈ V)
6 fveq1 5625 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
7 strnfvnd.c . . . 4 𝐸 = Slot 𝑁
8 df-slot 13031 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
97, 8eqtri 2250 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
106, 9fvmptg 5709 . 2 ((𝑆 ∈ V ∧ (𝑆𝑁) ∈ V) → (𝐸𝑆) = (𝑆𝑁))
112, 5, 10syl2anc 411 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cmpt 4144  cfv 5317  cn 9106  Slot cslot 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-slot 13031
This theorem is referenced by:  strnfvn  13048  strfvssn  13049  strndxid  13055  strsetsid  13060  strslfvd  13069  strslfv2d  13070  setsslid  13078  setsslnid  13079  basm  13089  edgfndxid  15804
  Copyright terms: Public domain W3C validator