Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strnfvnd | GIF version |
Description: Deduction version of strnfvn 12415. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
Ref | Expression |
---|---|
strnfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
strnfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strnfvnd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
strnfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strnfvnd.f | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | 1 | elexd 2739 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
3 | strnfvnd.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | fvexg 5505 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑆‘𝑁) ∈ V) | |
5 | 1, 3, 4 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ∈ V) |
6 | fveq1 5485 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
7 | strnfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
8 | df-slot 12398 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
9 | 7, 8 | eqtri 2186 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
10 | 6, 9 | fvmptg 5562 | . 2 ⊢ ((𝑆 ∈ V ∧ (𝑆‘𝑁) ∈ V) → (𝐸‘𝑆) = (𝑆‘𝑁)) |
11 | 2, 5, 10 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ↦ cmpt 4043 ‘cfv 5188 ℕcn 8857 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-slot 12398 |
This theorem is referenced by: strnfvn 12415 strfvssn 12416 strndxid 12422 strsetsid 12427 strslfvd 12435 strslfv2d 12436 setsslid 12444 setsslnid 12445 ressid 12456 |
Copyright terms: Public domain | W3C validator |