ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd GIF version

Theorem strnfvnd 12414
Description: Deduction version of strnfvn 12415. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c 𝐸 = Slot 𝑁
strnfvnd.f (𝜑𝑆𝑉)
strnfvnd.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
strnfvnd (𝜑 → (𝐸𝑆) = (𝑆𝑁))

Proof of Theorem strnfvnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3 (𝜑𝑆𝑉)
21elexd 2739 . 2 (𝜑𝑆 ∈ V)
3 strnfvnd.n . . 3 (𝜑𝑁 ∈ ℕ)
4 fvexg 5505 . . 3 ((𝑆𝑉𝑁 ∈ ℕ) → (𝑆𝑁) ∈ V)
51, 3, 4syl2anc 409 . 2 (𝜑 → (𝑆𝑁) ∈ V)
6 fveq1 5485 . . 3 (𝑥 = 𝑆 → (𝑥𝑁) = (𝑆𝑁))
7 strnfvnd.c . . . 4 𝐸 = Slot 𝑁
8 df-slot 12398 . . . 4 Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥𝑁))
97, 8eqtri 2186 . . 3 𝐸 = (𝑥 ∈ V ↦ (𝑥𝑁))
106, 9fvmptg 5562 . 2 ((𝑆 ∈ V ∧ (𝑆𝑁) ∈ V) → (𝐸𝑆) = (𝑆𝑁))
112, 5, 10syl2anc 409 1 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  cmpt 4043  cfv 5188  cn 8857  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-slot 12398
This theorem is referenced by:  strnfvn  12415  strfvssn  12416  strndxid  12422  strsetsid  12427  strslfvd  12435  strslfv2d  12436  setsslid  12444  setsslnid  12445  ressid  12456
  Copyright terms: Public domain W3C validator