![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strnfvnd | GIF version |
Description: Deduction version of strnfvn 12642. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
Ref | Expression |
---|---|
strnfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
strnfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strnfvnd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
strnfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strnfvnd.f | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | 1 | elexd 2773 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
3 | strnfvnd.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | fvexg 5574 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑆‘𝑁) ∈ V) | |
5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ∈ V) |
6 | fveq1 5554 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
7 | strnfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
8 | df-slot 12625 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
9 | 7, 8 | eqtri 2214 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
10 | 6, 9 | fvmptg 5634 | . 2 ⊢ ((𝑆 ∈ V ∧ (𝑆‘𝑁) ∈ V) → (𝐸‘𝑆) = (𝑆‘𝑁)) |
11 | 2, 5, 10 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ↦ cmpt 4091 ‘cfv 5255 ℕcn 8984 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fv 5263 df-slot 12625 |
This theorem is referenced by: strnfvn 12642 strfvssn 12643 strndxid 12649 strsetsid 12654 strslfvd 12663 strslfv2d 12664 setsslid 12672 setsslnid 12673 basm 12682 |
Copyright terms: Public domain | W3C validator |