Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strnfvnd | GIF version |
Description: Deduction version of strnfvn 12448. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
Ref | Expression |
---|---|
strnfvnd.c | ⊢ 𝐸 = Slot 𝑁 |
strnfvnd.f | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strnfvnd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
strnfvnd | ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strnfvnd.f | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | 1 | elexd 2748 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
3 | strnfvnd.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | fvexg 5526 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑆‘𝑁) ∈ V) | |
5 | 1, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ∈ V) |
6 | fveq1 5506 | . . 3 ⊢ (𝑥 = 𝑆 → (𝑥‘𝑁) = (𝑆‘𝑁)) | |
7 | strnfvnd.c | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
8 | df-slot 12431 | . . . 4 ⊢ Slot 𝑁 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) | |
9 | 7, 8 | eqtri 2196 | . . 3 ⊢ 𝐸 = (𝑥 ∈ V ↦ (𝑥‘𝑁)) |
10 | 6, 9 | fvmptg 5584 | . 2 ⊢ ((𝑆 ∈ V ∧ (𝑆‘𝑁) ∈ V) → (𝐸‘𝑆) = (𝑆‘𝑁)) |
11 | 2, 5, 10 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 Vcvv 2735 ↦ cmpt 4059 ‘cfv 5208 ℕcn 8890 Slot cslot 12426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fv 5216 df-slot 12431 |
This theorem is referenced by: strnfvn 12448 strfvssn 12449 strndxid 12455 strsetsid 12460 strslfvd 12468 strslfv2d 12469 setsslid 12477 setsslnid 12478 ressid 12490 |
Copyright terms: Public domain | W3C validator |