ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv GIF version

Theorem strslfv 12510
Description: Extract a structure component 𝐢 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 12471). By virtue of ndxslid 12490, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s 𝑆 Struct 𝑋
strslfv.e (𝐸 = Slot (πΈβ€˜ndx) ∧ (πΈβ€˜ndx) ∈ β„•)
strfv.n {⟨(πΈβ€˜ndx), 𝐢⟩} βŠ† 𝑆
Assertion
Ref Expression
strslfv (𝐢 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘†))

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2 (𝐸 = Slot (πΈβ€˜ndx) ∧ (πΈβ€˜ndx) ∈ β„•)
2 strfv.s . . 3 𝑆 Struct 𝑋
3 structex 12477 . . 3 (𝑆 Struct 𝑋 β†’ 𝑆 ∈ V)
42, 3mp1i 10 . 2 (𝐢 ∈ 𝑉 β†’ 𝑆 ∈ V)
52structfun 12483 . . 3 Fun ◑◑𝑆
65a1i 9 . 2 (𝐢 ∈ 𝑉 β†’ Fun ◑◑𝑆)
7 strfv.n . . 3 {⟨(πΈβ€˜ndx), 𝐢⟩} βŠ† 𝑆
81simpri 113 . . . . 5 (πΈβ€˜ndx) ∈ β„•
9 opexg 4230 . . . . 5 (((πΈβ€˜ndx) ∈ β„• ∧ 𝐢 ∈ 𝑉) β†’ ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ V)
108, 9mpan 424 . . . 4 (𝐢 ∈ 𝑉 β†’ ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ V)
11 snssg 3728 . . . 4 (⟨(πΈβ€˜ndx), 𝐢⟩ ∈ V β†’ (⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆 ↔ {⟨(πΈβ€˜ndx), 𝐢⟩} βŠ† 𝑆))
1210, 11syl 14 . . 3 (𝐢 ∈ 𝑉 β†’ (⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆 ↔ {⟨(πΈβ€˜ndx), 𝐢⟩} βŠ† 𝑆))
137, 12mpbiri 168 . 2 (𝐢 ∈ 𝑉 β†’ ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆)
14 id 19 . 2 (𝐢 ∈ 𝑉 β†’ 𝐢 ∈ 𝑉)
151, 4, 6, 13, 14strslfv2d 12508 1 (𝐢 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘†))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  Vcvv 2739   βŠ† wss 3131  {csn 3594  βŸ¨cop 3597   class class class wbr 4005  β—‘ccnv 4627  Fun wfun 5212  β€˜cfv 5218  β„•cn 8922   Struct cstr 12461  ndxcnx 12462  Slot cslot 12464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-struct 12467  df-slot 12469
This theorem is referenced by:  strslfv3  12511  cnfldbas  13599  cnfldadd  13600  cnfldmul  13601  cnfldcj  13602
  Copyright terms: Public domain W3C validator