ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv GIF version

Theorem strslfv 12748
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 12709). By virtue of ndxslid 12728, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s 𝑆 Struct 𝑋
strslfv.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv.n {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
Assertion
Ref Expression
strslfv (𝐶𝑉𝐶 = (𝐸𝑆))

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strfv.s . . 3 𝑆 Struct 𝑋
3 structex 12715 . . 3 (𝑆 Struct 𝑋𝑆 ∈ V)
42, 3mp1i 10 . 2 (𝐶𝑉𝑆 ∈ V)
52structfun 12721 . . 3 Fun 𝑆
65a1i 9 . 2 (𝐶𝑉 → Fun 𝑆)
7 strfv.n . . 3 {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
81simpri 113 . . . . 5 (𝐸‘ndx) ∈ ℕ
9 opexg 4262 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
108, 9mpan 424 . . . 4 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
11 snssg 3757 . . . 4 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
1210, 11syl 14 . . 3 (𝐶𝑉 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
137, 12mpbiri 168 . 2 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
14 id 19 . 2 (𝐶𝑉𝐶𝑉)
151, 4, 6, 13, 14strslfv2d 12746 1 (𝐶𝑉𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {csn 3623  cop 3626   class class class wbr 4034  ccnv 4663  Fun wfun 5253  cfv 5259  cn 9007   Struct cstr 12699  ndxcnx 12700  Slot cslot 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-struct 12705  df-slot 12707
This theorem is referenced by:  cnfldbas  14192  mpocnfldadd  14193  mpocnfldmul  14195  cnfldcj  14197  cnfldtset  14198  cnfldle  14199  cnfldds  14200
  Copyright terms: Public domain W3C validator