ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv GIF version

Theorem strslfv 12723
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 12684). By virtue of ndxslid 12703, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s 𝑆 Struct 𝑋
strslfv.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv.n {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
Assertion
Ref Expression
strslfv (𝐶𝑉𝐶 = (𝐸𝑆))

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strfv.s . . 3 𝑆 Struct 𝑋
3 structex 12690 . . 3 (𝑆 Struct 𝑋𝑆 ∈ V)
42, 3mp1i 10 . 2 (𝐶𝑉𝑆 ∈ V)
52structfun 12696 . . 3 Fun 𝑆
65a1i 9 . 2 (𝐶𝑉 → Fun 𝑆)
7 strfv.n . . 3 {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
81simpri 113 . . . . 5 (𝐸‘ndx) ∈ ℕ
9 opexg 4261 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
108, 9mpan 424 . . . 4 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
11 snssg 3756 . . . 4 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
1210, 11syl 14 . . 3 (𝐶𝑉 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
137, 12mpbiri 168 . 2 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
14 id 19 . 2 (𝐶𝑉𝐶𝑉)
151, 4, 6, 13, 14strslfv2d 12721 1 (𝐶𝑉𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {csn 3622  cop 3625   class class class wbr 4033  ccnv 4662  Fun wfun 5252  cfv 5258  cn 8990   Struct cstr 12674  ndxcnx 12675  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-struct 12680  df-slot 12682
This theorem is referenced by:  strslfv3  12724  cnfldbas  14116  mpocnfldadd  14117  mpocnfldmul  14119  cnfldcj  14121  cnfldtset  14122  cnfldle  14123  cnfldds  14124
  Copyright terms: Public domain W3C validator