Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslfv | GIF version |
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 12400). By virtue of ndxslid 12419, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv.s | ⊢ 𝑆 Struct 𝑋 |
strslfv.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
Ref | Expression |
---|---|
strslfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
3 | structex 12406 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
4 | 2, 3 | mp1i 10 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝑆 ∈ V) |
5 | 2 | structfun 12412 | . . 3 ⊢ Fun ◡◡𝑆 |
6 | 5 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → Fun ◡◡𝑆) |
7 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
8 | 1 | simpri 112 | . . . . 5 ⊢ (𝐸‘ndx) ∈ ℕ |
9 | opexg 4206 | . . . . 5 ⊢ (((𝐸‘ndx) ∈ ℕ ∧ 𝐶 ∈ 𝑉) → 〈(𝐸‘ndx), 𝐶〉 ∈ V) | |
10 | 8, 9 | mpan 421 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ V) |
11 | snssg 3709 | . . . 4 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ V → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) |
13 | 7, 12 | mpbiri 167 | . 2 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
14 | id 19 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
15 | 1, 4, 6, 13, 14 | strslfv2d 12436 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 {csn 3576 〈cop 3579 class class class wbr 3982 ◡ccnv 4603 Fun wfun 5182 ‘cfv 5188 ℕcn 8857 Struct cstr 12390 ndxcnx 12391 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-struct 12396 df-slot 12398 |
This theorem is referenced by: strslfv3 12439 |
Copyright terms: Public domain | W3C validator |