![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslfv | GIF version |
Description: Extract a structure component πΆ (such as the base set) from a structure π with a component extractor πΈ (such as the base set extractor df-base 12471). By virtue of ndxslid 12490, this can be done without having to refer to the hard-coded numeric index of πΈ. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv.s | β’ π Struct π |
strslfv.e | β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
strfv.n | β’ {β¨(πΈβndx), πΆβ©} β π |
Ref | Expression |
---|---|
strslfv | β’ (πΆ β π β πΆ = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv.e | . 2 β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) | |
2 | strfv.s | . . 3 β’ π Struct π | |
3 | structex 12477 | . . 3 β’ (π Struct π β π β V) | |
4 | 2, 3 | mp1i 10 | . 2 β’ (πΆ β π β π β V) |
5 | 2 | structfun 12483 | . . 3 β’ Fun β‘β‘π |
6 | 5 | a1i 9 | . 2 β’ (πΆ β π β Fun β‘β‘π) |
7 | strfv.n | . . 3 β’ {β¨(πΈβndx), πΆβ©} β π | |
8 | 1 | simpri 113 | . . . . 5 β’ (πΈβndx) β β |
9 | opexg 4230 | . . . . 5 β’ (((πΈβndx) β β β§ πΆ β π) β β¨(πΈβndx), πΆβ© β V) | |
10 | 8, 9 | mpan 424 | . . . 4 β’ (πΆ β π β β¨(πΈβndx), πΆβ© β V) |
11 | snssg 3728 | . . . 4 β’ (β¨(πΈβndx), πΆβ© β V β (β¨(πΈβndx), πΆβ© β π β {β¨(πΈβndx), πΆβ©} β π)) | |
12 | 10, 11 | syl 14 | . . 3 β’ (πΆ β π β (β¨(πΈβndx), πΆβ© β π β {β¨(πΈβndx), πΆβ©} β π)) |
13 | 7, 12 | mpbiri 168 | . 2 β’ (πΆ β π β β¨(πΈβndx), πΆβ© β π) |
14 | id 19 | . 2 β’ (πΆ β π β πΆ β π) | |
15 | 1, 4, 6, 13, 14 | strslfv2d 12508 | 1 β’ (πΆ β π β πΆ = (πΈβπ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 Vcvv 2739 β wss 3131 {csn 3594 β¨cop 3597 class class class wbr 4005 β‘ccnv 4627 Fun wfun 5212 βcfv 5218 βcn 8922 Struct cstr 12461 ndxcnx 12462 Slot cslot 12464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-struct 12467 df-slot 12469 |
This theorem is referenced by: strslfv3 12511 cnfldbas 13599 cnfldadd 13600 cnfldmul 13601 cnfldcj 13602 |
Copyright terms: Public domain | W3C validator |