![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslfv | GIF version |
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 12627). By virtue of ndxslid 12646, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv.s | ⊢ 𝑆 Struct 𝑋 |
strslfv.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
Ref | Expression |
---|---|
strslfv | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strfv.s | . . 3 ⊢ 𝑆 Struct 𝑋 | |
3 | structex 12633 | . . 3 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
4 | 2, 3 | mp1i 10 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝑆 ∈ V) |
5 | 2 | structfun 12639 | . . 3 ⊢ Fun ◡◡𝑆 |
6 | 5 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → Fun ◡◡𝑆) |
7 | strfv.n | . . 3 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
8 | 1 | simpri 113 | . . . . 5 ⊢ (𝐸‘ndx) ∈ ℕ |
9 | opexg 4258 | . . . . 5 ⊢ (((𝐸‘ndx) ∈ ℕ ∧ 𝐶 ∈ 𝑉) → 〈(𝐸‘ndx), 𝐶〉 ∈ V) | |
10 | 8, 9 | mpan 424 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ V) |
11 | snssg 3753 | . . . 4 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ V → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) |
13 | 7, 12 | mpbiri 168 | . 2 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
14 | id 19 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
15 | 1, 4, 6, 13, 14 | strslfv2d 12664 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 {csn 3619 〈cop 3622 class class class wbr 4030 ◡ccnv 4659 Fun wfun 5249 ‘cfv 5255 ℕcn 8984 Struct cstr 12617 ndxcnx 12618 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-struct 12623 df-slot 12625 |
This theorem is referenced by: strslfv3 12667 cnfldbas 14059 mpocnfldadd 14060 mpocnfldmul 14062 cnfldcj 14064 cnfldtset 14065 cnfldle 14066 cnfldds 14067 |
Copyright terms: Public domain | W3C validator |