ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv GIF version

Theorem strslfv 13063
Description: Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 13024). By virtue of ndxslid 13043, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv.s 𝑆 Struct 𝑋
strslfv.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv.n {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
Assertion
Ref Expression
strslfv (𝐶𝑉𝐶 = (𝐸𝑆))

Proof of Theorem strslfv
StepHypRef Expression
1 strslfv.e . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strfv.s . . 3 𝑆 Struct 𝑋
3 structex 13030 . . 3 (𝑆 Struct 𝑋𝑆 ∈ V)
42, 3mp1i 10 . 2 (𝐶𝑉𝑆 ∈ V)
52structfun 13036 . . 3 Fun 𝑆
65a1i 9 . 2 (𝐶𝑉 → Fun 𝑆)
7 strfv.n . . 3 {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
81simpri 113 . . . . 5 (𝐸‘ndx) ∈ ℕ
9 opexg 4313 . . . . 5 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
108, 9mpan 424 . . . 4 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
11 snssg 3801 . . . 4 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
1210, 11syl 14 . . 3 (𝐶𝑉 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
137, 12mpbiri 168 . 2 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
14 id 19 . 2 (𝐶𝑉𝐶𝑉)
151, 4, 6, 13, 14strslfv2d 13061 1 (𝐶𝑉𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  {csn 3666  cop 3669   class class class wbr 4082  ccnv 4715  Fun wfun 5308  cfv 5314  cn 9098   Struct cstr 13014  ndxcnx 13015  Slot cslot 13017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fv 5322  df-struct 13020  df-slot 13022
This theorem is referenced by:  cnfldbas  14509  mpocnfldadd  14510  mpocnfldmul  14512  cnfldcj  14514  cnfldtset  14515  cnfldle  14516  cnfldds  14517
  Copyright terms: Public domain W3C validator