| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > npcan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| npcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 8306 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | 1, 2 | addcomd 8258 |
. 2
|
| 4 | pncan3 8315 |
. . 3
| |
| 5 | 4 | ancoms 268 |
. 2
|
| 6 | 3, 5 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 |
| This theorem is referenced by: addsubass 8317 npncan 8328 nppcan 8329 nnpcan 8330 subcan2 8332 nnncan 8342 npcand 8422 nn1suc 9090 zlem1lt 9464 zltlem1 9465 peano5uzti 9516 nummac 9583 uzp1 9717 peano2uzr 9741 fz01en 10210 fzsuc2 10236 fseq1m1p1 10252 fzoss2 10331 fzoaddel2 10356 fzosplitsnm1 10375 fzosplitprm1 10400 modfzo0difsn 10577 seq3m1 10655 monoord2 10668 ser3mono 10669 seqf1oglem1 10701 seqf1oglem2 10702 expm1t 10749 expubnd 10778 bcm1k 10942 bcn2 10946 hashfzo 11004 seq3coll 11024 swrdfv2 11154 swrdspsleq 11158 swrdlsw 11160 ccatpfx 11192 shftlem 11242 shftfvalg 11244 shftfval 11247 iserex 11765 serf0 11778 fsumm1 11842 mptfzshft 11868 binomlem 11909 binom1dif 11913 isumsplit 11917 dvdssub2 12261 4sqlem19 12847 perfect1 15585 lgsquad2lem1 15673 |
| Copyright terms: Public domain | W3C validator |