| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > npcan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| npcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 8271 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | 1, 2 | addcomd 8223 |
. 2
|
| 4 | pncan3 8280 |
. . 3
| |
| 5 | 4 | ancoms 268 |
. 2
|
| 6 | 3, 5 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 |
| This theorem is referenced by: addsubass 8282 npncan 8293 nppcan 8294 nnpcan 8295 subcan2 8297 nnncan 8307 npcand 8387 nn1suc 9055 zlem1lt 9429 zltlem1 9430 peano5uzti 9481 nummac 9548 uzp1 9682 peano2uzr 9706 fz01en 10175 fzsuc2 10201 fseq1m1p1 10217 fzoss2 10296 fzoaddel2 10319 fzosplitsnm1 10338 fzosplitprm1 10363 modfzo0difsn 10540 seq3m1 10618 monoord2 10631 ser3mono 10632 seqf1oglem1 10664 seqf1oglem2 10665 expm1t 10712 expubnd 10741 bcm1k 10905 bcn2 10909 hashfzo 10967 seq3coll 10987 swrdfv2 11116 swrdspsleq 11120 swrdlsw 11122 shftlem 11127 shftfvalg 11129 shftfval 11132 iserex 11650 serf0 11663 fsumm1 11727 mptfzshft 11753 binomlem 11794 binom1dif 11798 isumsplit 11802 dvdssub2 12146 4sqlem19 12732 perfect1 15470 lgsquad2lem1 15558 |
| Copyright terms: Public domain | W3C validator |