ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npcan Unicode version

Theorem npcan 8316
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
npcan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  A )

Proof of Theorem npcan
StepHypRef Expression
1 subcl 8306 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 simpr 110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
31, 2addcomd 8258 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  ( B  +  ( A  -  B ) ) )
4 pncan3 8315 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  +  ( A  -  B ) )  =  A )
54ancoms 268 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( A  -  B ) )  =  A )
63, 5eqtrd 2240 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958    + caddc 7963    - cmin 8278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280
This theorem is referenced by:  addsubass  8317  npncan  8328  nppcan  8329  nnpcan  8330  subcan2  8332  nnncan  8342  npcand  8422  nn1suc  9090  zlem1lt  9464  zltlem1  9465  peano5uzti  9516  nummac  9583  uzp1  9717  peano2uzr  9741  fz01en  10210  fzsuc2  10236  fseq1m1p1  10252  fzoss2  10331  fzoaddel2  10356  fzosplitsnm1  10375  fzosplitprm1  10400  modfzo0difsn  10577  seq3m1  10655  monoord2  10668  ser3mono  10669  seqf1oglem1  10701  seqf1oglem2  10702  expm1t  10749  expubnd  10778  bcm1k  10942  bcn2  10946  hashfzo  11004  seq3coll  11024  swrdfv2  11154  swrdspsleq  11158  swrdlsw  11160  ccatpfx  11192  shftlem  11242  shftfvalg  11244  shftfval  11247  iserex  11765  serf0  11778  fsumm1  11842  mptfzshft  11868  binomlem  11909  binom1dif  11913  isumsplit  11917  dvdssub2  12261  4sqlem19  12847  perfect1  15585  lgsquad2lem1  15673
  Copyright terms: Public domain W3C validator