ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npcan Unicode version

Theorem npcan 7935
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
npcan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  A )

Proof of Theorem npcan
StepHypRef Expression
1 subcl 7925 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
31, 2addcomd 7877 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  ( B  +  ( A  -  B ) ) )
4 pncan3 7934 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  +  ( A  -  B ) )  =  A )
54ancoms 266 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( A  -  B ) )  =  A )
63, 5eqtrd 2148 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463  (class class class)co 5740   CCcc 7582    + caddc 7587    - cmin 7897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-resscn 7676  ax-1cn 7677  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-sub 7899
This theorem is referenced by:  addsubass  7936  npncan  7947  nppcan  7948  nnpcan  7949  subcan2  7951  nnncan  7961  npcand  8041  nn1suc  8696  zlem1lt  9061  zltlem1  9062  peano5uzti  9110  nummac  9177  uzp1  9308  peano2uzr  9329  fz01en  9773  fzsuc2  9799  fseq1m1p1  9815  fzoss2  9889  fzoaddel2  9910  fzosplitsnm1  9926  fzosplitprm1  9951  modfzo0difsn  10108  seq3m1  10181  monoord2  10190  ser3mono  10191  expm1t  10261  expubnd  10290  bcm1k  10446  bcn2  10450  hashfzo  10508  seq3coll  10525  shftlem  10528  shftfvalg  10530  shftfval  10533  iserex  11048  serf0  11061  fsumm1  11125  mptfzshft  11151  binomlem  11192  binom1dif  11196  isumsplit  11200  dvdssub2  11431
  Copyright terms: Public domain W3C validator