| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > npcan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| npcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 8345 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | 1, 2 | addcomd 8297 |
. 2
|
| 4 | pncan3 8354 |
. . 3
| |
| 5 | 4 | ancoms 268 |
. 2
|
| 6 | 3, 5 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 |
| This theorem is referenced by: addsubass 8356 npncan 8367 nppcan 8368 nnpcan 8369 subcan2 8371 nnncan 8381 npcand 8461 nn1suc 9129 zlem1lt 9503 zltlem1 9504 peano5uzti 9555 nummac 9622 uzp1 9756 peano2uzr 9780 fz01en 10249 fzsuc2 10275 fseq1m1p1 10291 fzoss2 10370 fzoaddel2 10396 fzosplitsnm1 10415 fzosplitprm1 10440 modfzo0difsn 10617 seq3m1 10695 monoord2 10708 ser3mono 10709 seqf1oglem1 10741 seqf1oglem2 10742 expm1t 10789 expubnd 10818 bcm1k 10982 bcn2 10986 hashfzo 11044 seq3coll 11064 swrdfv2 11195 swrdspsleq 11199 swrdlsw 11201 ccatpfx 11233 shftlem 11327 shftfvalg 11329 shftfval 11332 iserex 11850 serf0 11863 fsumm1 11927 mptfzshft 11953 binomlem 11994 binom1dif 11998 isumsplit 12002 dvdssub2 12346 4sqlem19 12932 perfect1 15672 lgsquad2lem1 15760 |
| Copyright terms: Public domain | W3C validator |