Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > npcan | Unicode version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
npcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl 8097 | . . 3 | |
2 | simpr 109 | . . 3 | |
3 | 1, 2 | addcomd 8049 | . 2 |
4 | pncan3 8106 | . . 3 | |
5 | 4 | ancoms 266 | . 2 |
6 | 3, 5 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 caddc 7756 cmin 8069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 |
This theorem is referenced by: addsubass 8108 npncan 8119 nppcan 8120 nnpcan 8121 subcan2 8123 nnncan 8133 npcand 8213 nn1suc 8876 zlem1lt 9247 zltlem1 9248 peano5uzti 9299 nummac 9366 uzp1 9499 peano2uzr 9523 fz01en 9988 fzsuc2 10014 fseq1m1p1 10030 fzoss2 10107 fzoaddel2 10128 fzosplitsnm1 10144 fzosplitprm1 10169 modfzo0difsn 10330 seq3m1 10403 monoord2 10412 ser3mono 10413 expm1t 10483 expubnd 10512 bcm1k 10673 bcn2 10677 hashfzo 10735 seq3coll 10755 shftlem 10758 shftfvalg 10760 shftfval 10763 iserex 11280 serf0 11293 fsumm1 11357 mptfzshft 11383 binomlem 11424 binom1dif 11428 isumsplit 11432 dvdssub2 11775 |
Copyright terms: Public domain | W3C validator |