ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npcan Unicode version

Theorem npcan 8281
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
npcan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  A )

Proof of Theorem npcan
StepHypRef Expression
1 subcl 8271 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
2 simpr 110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
31, 2addcomd 8223 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  ( B  +  ( A  -  B ) ) )
4 pncan3 8280 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  +  ( A  -  B ) )  =  A )
54ancoms 268 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( A  -  B ) )  =  A )
63, 5eqtrd 2238 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923    + caddc 7928    - cmin 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245
This theorem is referenced by:  addsubass  8282  npncan  8293  nppcan  8294  nnpcan  8295  subcan2  8297  nnncan  8307  npcand  8387  nn1suc  9055  zlem1lt  9429  zltlem1  9430  peano5uzti  9481  nummac  9548  uzp1  9682  peano2uzr  9706  fz01en  10175  fzsuc2  10201  fseq1m1p1  10217  fzoss2  10296  fzoaddel2  10319  fzosplitsnm1  10338  fzosplitprm1  10363  modfzo0difsn  10540  seq3m1  10618  monoord2  10631  ser3mono  10632  seqf1oglem1  10664  seqf1oglem2  10665  expm1t  10712  expubnd  10741  bcm1k  10905  bcn2  10909  hashfzo  10967  seq3coll  10987  swrdfv2  11116  swrdspsleq  11120  swrdlsw  11122  shftlem  11127  shftfvalg  11129  shftfval  11132  iserex  11650  serf0  11663  fsumm1  11727  mptfzshft  11753  binomlem  11794  binom1dif  11798  isumsplit  11802  dvdssub2  12146  4sqlem19  12732  perfect1  15470  lgsquad2lem1  15558
  Copyright terms: Public domain W3C validator