| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > npcan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| npcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 8244 |
. . 3
| |
| 2 | simpr 110 |
. . 3
| |
| 3 | 1, 2 | addcomd 8196 |
. 2
|
| 4 | pncan3 8253 |
. . 3
| |
| 5 | 4 | ancoms 268 |
. 2
|
| 6 | 3, 5 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 |
| This theorem is referenced by: addsubass 8255 npncan 8266 nppcan 8267 nnpcan 8268 subcan2 8270 nnncan 8280 npcand 8360 nn1suc 9028 zlem1lt 9401 zltlem1 9402 peano5uzti 9453 nummac 9520 uzp1 9654 peano2uzr 9678 fz01en 10147 fzsuc2 10173 fseq1m1p1 10189 fzoss2 10267 fzoaddel2 10288 fzosplitsnm1 10304 fzosplitprm1 10329 modfzo0difsn 10506 seq3m1 10584 monoord2 10597 ser3mono 10598 seqf1oglem1 10630 seqf1oglem2 10631 expm1t 10678 expubnd 10707 bcm1k 10871 bcn2 10875 hashfzo 10933 seq3coll 10953 shftlem 11000 shftfvalg 11002 shftfval 11005 iserex 11523 serf0 11536 fsumm1 11600 mptfzshft 11626 binomlem 11667 binom1dif 11671 isumsplit 11675 dvdssub2 12019 4sqlem19 12605 perfect1 15342 lgsquad2lem1 15430 |
| Copyright terms: Public domain | W3C validator |