ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcan2 GIF version

Theorem subcan2 7955
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
Assertion
Ref Expression
subcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = (𝐵𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem subcan2
StepHypRef Expression
1 simp1 966 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
2 simp3 968 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
3 subcl 7929 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
433adant1 984 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
5 subadd2 7934 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵𝐶) ∈ ℂ) → ((𝐴𝐶) = (𝐵𝐶) ↔ ((𝐵𝐶) + 𝐶) = 𝐴))
61, 2, 4, 5syl3anc 1201 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = (𝐵𝐶) ↔ ((𝐵𝐶) + 𝐶) = 𝐴))
7 npcan 7939 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) + 𝐶) = 𝐵)
873adant1 984 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) + 𝐶) = 𝐵)
98eqeq1d 2126 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵𝐶) + 𝐶) = 𝐴𝐵 = 𝐴))
10 eqcom 2119 . . 3 (𝐵 = 𝐴𝐴 = 𝐵)
119, 10syl6bb 195 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐵𝐶) + 𝐶) = 𝐴𝐴 = 𝐵))
126, 11bitrd 187 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = (𝐵𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 947   = wceq 1316  wcel 1465  (class class class)co 5742  cc 7586   + caddc 7591  cmin 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-setind 4422  ax-resscn 7680  ax-1cn 7681  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-sub 7903
This theorem is referenced by:  subeq0  7956  subcan2i  8024  subcan2d  8083  subcan2ad  8086  zextlt  9111
  Copyright terms: Public domain W3C validator