ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zextlt Unicode version

Theorem zextlt 9435
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextlt  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <  M  <->  k  <  N ) )  ->  M  =  N )
Distinct variable groups:    k, M    k, N

Proof of Theorem zextlt
StepHypRef Expression
1 zltlem1 9400 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  <  M  <->  k  <_  ( M  - 
1 ) ) )
21adantrr 479 . . . . . 6  |-  ( ( k  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( k  <  M  <->  k  <_  ( M  -  1 ) ) )
3 zltlem1 9400 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <  N  <->  k  <_  ( N  - 
1 ) ) )
43adantrl 478 . . . . . 6  |-  ( ( k  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( k  <  N  <->  k  <_  ( N  -  1 ) ) )
52, 4bibi12d 235 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( (
k  <  M  <->  k  <  N )  <->  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) ) ) )
65ancoms 268 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( k  <  M  <->  k  <  N )  <->  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) ) ) )
76ralbidva 2493 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  < 
M  <->  k  <  N
)  <->  A. k  e.  ZZ  ( k  <_  ( M  -  1 )  <-> 
k  <_  ( N  -  1 ) ) ) )
8 peano2zm 9381 . . . . 5  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
9 peano2zm 9381 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
10 zextle 9434 . . . . . 6  |-  ( ( ( M  -  1 )  e.  ZZ  /\  ( N  -  1
)  e.  ZZ  /\  A. k  e.  ZZ  (
k  <_  ( M  -  1 )  <->  k  <_  ( N  -  1 ) ) )  ->  ( M  -  1 )  =  ( N  - 
1 ) )
11103expia 1207 . . . . 5  |-  ( ( ( M  -  1 )  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) )  ->  ( M  -  1 )  =  ( N  -  1 ) ) )
128, 9, 11syl2an 289 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) )  ->  ( M  -  1 )  =  ( N  -  1 ) ) )
13 zcn 9348 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 zcn 9348 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
15 ax-1cn 7989 . . . . . 6  |-  1  e.  CC
16 subcan2 8268 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  1  e.  CC )  ->  (
( M  -  1 )  =  ( N  -  1 )  <->  M  =  N ) )
1715, 16mp3an3 1337 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  - 
1 )  =  ( N  -  1 )  <-> 
M  =  N ) )
1813, 14, 17syl2an 289 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  - 
1 )  =  ( N  -  1 )  <-> 
M  =  N ) )
1912, 18sylibd 149 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  <_ 
( M  -  1 )  <->  k  <_  ( N  -  1 ) )  ->  M  =  N ) )
207, 19sylbid 150 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ZZ  ( k  < 
M  <->  k  <  N
)  ->  M  =  N ) )
21203impia 1202 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A. k  e.  ZZ  (
k  <  M  <->  k  <  N ) )  ->  M  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4034  (class class class)co 5925   CCcc 7894   1c1 7897    < clt 8078    <_ cle 8079    - cmin 8214   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator