Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > submid | GIF version |
Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
submss.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
submid | ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3168 | . 2 ⊢ (𝑀 ∈ Mnd → 𝐵 ⊆ 𝐵) | |
2 | submss.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
3 | eqid 2170 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
4 | 2, 3 | mndidcl 12666 | . 2 ⊢ (𝑀 ∈ Mnd → (0g‘𝑀) ∈ 𝐵) |
5 | eqid 2170 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
6 | 2, 5 | mndcl 12659 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
7 | 6 | 3expb 1199 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
8 | 7 | ralrimivva 2552 | . 2 ⊢ (𝑀 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
9 | 2, 3, 5 | issubm 12695 | . 2 ⊢ (𝑀 ∈ Mnd → (𝐵 ∈ (SubMnd‘𝑀) ↔ (𝐵 ⊆ 𝐵 ∧ (0g‘𝑀) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵))) |
10 | 1, 4, 8, 9 | mpbir3and 1175 | 1 ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ‘cfv 5198 (class class class)co 5853 Basecbs 12416 +gcplusg 12480 0gc0g 12596 Mndcmnd 12652 SubMndcsubmnd 12682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-submnd 12684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |