| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > submid | GIF version | ||
| Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| submss.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| submid | ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3225 | . 2 ⊢ (𝑀 ∈ Mnd → 𝐵 ⊆ 𝐵) | |
| 2 | submss.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | eqid 2209 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 4 | 2, 3 | mndidcl 13429 | . 2 ⊢ (𝑀 ∈ Mnd → (0g‘𝑀) ∈ 𝐵) |
| 5 | eqid 2209 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 6 | 2, 5 | mndcl 13422 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 7 | 6 | 3expb 1209 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 8 | 7 | ralrimivva 2592 | . 2 ⊢ (𝑀 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 9 | 2, 3, 5 | issubm 13471 | . 2 ⊢ (𝑀 ∈ Mnd → (𝐵 ∈ (SubMnd‘𝑀) ↔ (𝐵 ⊆ 𝐵 ∧ (0g‘𝑀) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵))) |
| 10 | 1, 4, 8, 9 | mpbir3and 1185 | 1 ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 Mndcmnd 13415 SubMndcsubmnd 13457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-submnd 13459 |
| This theorem is referenced by: gsumwcl 13496 |
| Copyright terms: Public domain | W3C validator |