| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > submid | GIF version | ||
| Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| submss.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| submid | ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd 3245 | . 2 ⊢ (𝑀 ∈ Mnd → 𝐵 ⊆ 𝐵) | |
| 2 | submss.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 3 | eqid 2229 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 4 | 2, 3 | mndidcl 13471 | . 2 ⊢ (𝑀 ∈ Mnd → (0g‘𝑀) ∈ 𝐵) |
| 5 | eqid 2229 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 6 | 2, 5 | mndcl 13464 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 7 | 6 | 3expb 1228 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 8 | 7 | ralrimivva 2612 | . 2 ⊢ (𝑀 ∈ Mnd → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 9 | 2, 3, 5 | issubm 13513 | . 2 ⊢ (𝑀 ∈ Mnd → (𝐵 ∈ (SubMnd‘𝑀) ↔ (𝐵 ⊆ 𝐵 ∧ (0g‘𝑀) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) ∈ 𝐵))) |
| 10 | 1, 4, 8, 9 | mpbir3and 1204 | 1 ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 0gc0g 13297 Mndcmnd 13457 SubMndcsubmnd 13499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5960 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-submnd 13501 |
| This theorem is referenced by: gsumwcl 13538 |
| Copyright terms: Public domain | W3C validator |