ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnpcan Unicode version

Theorem pnpcan 8260
Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
pnpcan  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  ( A  +  C ) )  =  ( B  -  C ) )

Proof of Theorem pnpcan
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
2 simp2 1000 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
31, 2addcld 8041 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  B )  e.  CC )
4 simp3 1001 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
5 subsub4 8254 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  (
( ( A  +  B )  -  A
)  -  C )  =  ( ( A  +  B )  -  ( A  +  C
) ) )
63, 1, 4, 5syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  +  B )  -  A
)  -  C )  =  ( ( A  +  B )  -  ( A  +  C
) ) )
7 pncan2 8228 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  A
)  =  B )
873adant3 1019 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  A )  =  B )
98oveq1d 5934 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  +  B )  -  A
)  -  C )  =  ( B  -  C ) )
106, 9eqtr3d 2228 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  ( A  +  C ) )  =  ( B  -  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872    + caddc 7877    - cmin 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194
This theorem is referenced by:  pnpcan2  8261  pnpcand  8369  cju  8982
  Copyright terms: Public domain W3C validator