| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprleubex | Unicode version | ||
| Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| Ref | Expression |
|---|---|
| suprubex.ex |
|
| suprubex.ss |
|
| suprlubex.b |
|
| Ref | Expression |
|---|---|
| suprleubex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 8187 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | suprubex.ex |
. . . . . . 7
| |
| 4 | 2, 3 | supclti 7126 |
. . . . . 6
|
| 5 | suprlubex.b |
. . . . . 6
| |
| 6 | 4, 5 | lenltd 8225 |
. . . . 5
|
| 7 | suprubex.ss |
. . . . . 6
| |
| 8 | 3, 7, 5 | suprnubex 9061 |
. . . . 5
|
| 9 | 6, 8 | bitrd 188 |
. . . 4
|
| 10 | breq2 4063 |
. . . . . 6
| |
| 11 | 10 | notbid 669 |
. . . . 5
|
| 12 | 11 | cbvralv 2742 |
. . . 4
|
| 13 | 9, 12 | bitr4di 198 |
. . 3
|
| 14 | 7 | sselda 3201 |
. . . . 5
|
| 15 | 5 | adantr 276 |
. . . . 5
|
| 16 | 14, 15 | lenltd 8225 |
. . . 4
|
| 17 | 16 | ralbidva 2504 |
. . 3
|
| 18 | 13, 17 | bitr4d 191 |
. 2
|
| 19 | breq1 4062 |
. . 3
| |
| 20 | 19 | cbvralv 2742 |
. 2
|
| 21 | 18, 20 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-po 4361 df-iso 4362 df-xp 4699 df-cnv 4701 df-iota 5251 df-riota 5922 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: suprzclex 9506 suplociccex 15212 |
| Copyright terms: Public domain | W3C validator |