| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprleubex | Unicode version | ||
| Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| Ref | Expression |
|---|---|
| suprubex.ex |
|
| suprubex.ss |
|
| suprlubex.b |
|
| Ref | Expression |
|---|---|
| suprleubex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 8226 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | suprubex.ex |
. . . . . . 7
| |
| 4 | 2, 3 | supclti 7165 |
. . . . . 6
|
| 5 | suprlubex.b |
. . . . . 6
| |
| 6 | 4, 5 | lenltd 8264 |
. . . . 5
|
| 7 | suprubex.ss |
. . . . . 6
| |
| 8 | 3, 7, 5 | suprnubex 9100 |
. . . . 5
|
| 9 | 6, 8 | bitrd 188 |
. . . 4
|
| 10 | breq2 4087 |
. . . . . 6
| |
| 11 | 10 | notbid 671 |
. . . . 5
|
| 12 | 11 | cbvralv 2765 |
. . . 4
|
| 13 | 9, 12 | bitr4di 198 |
. . 3
|
| 14 | 7 | sselda 3224 |
. . . . 5
|
| 15 | 5 | adantr 276 |
. . . . 5
|
| 16 | 14, 15 | lenltd 8264 |
. . . 4
|
| 17 | 16 | ralbidva 2526 |
. . 3
|
| 18 | 13, 17 | bitr4d 191 |
. 2
|
| 19 | breq1 4086 |
. . 3
| |
| 20 | 19 | cbvralv 2765 |
. 2
|
| 21 | 18, 20 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-po 4387 df-iso 4388 df-xp 4725 df-cnv 4727 df-iota 5278 df-riota 5954 df-sup 7151 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: suprzclex 9545 suplociccex 15299 |
| Copyright terms: Public domain | W3C validator |