| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suprleubex | Unicode version | ||
| Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| Ref | Expression |
|---|---|
| suprubex.ex |
|
| suprubex.ss |
|
| suprlubex.b |
|
| Ref | Expression |
|---|---|
| suprleubex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 8123 |
. . . . . . . 8
| |
| 2 | 1 | adantl 277 |
. . . . . . 7
|
| 3 | suprubex.ex |
. . . . . . 7
| |
| 4 | 2, 3 | supclti 7073 |
. . . . . 6
|
| 5 | suprlubex.b |
. . . . . 6
| |
| 6 | 4, 5 | lenltd 8161 |
. . . . 5
|
| 7 | suprubex.ss |
. . . . . 6
| |
| 8 | 3, 7, 5 | suprnubex 8997 |
. . . . 5
|
| 9 | 6, 8 | bitrd 188 |
. . . 4
|
| 10 | breq2 4038 |
. . . . . 6
| |
| 11 | 10 | notbid 668 |
. . . . 5
|
| 12 | 11 | cbvralv 2729 |
. . . 4
|
| 13 | 9, 12 | bitr4di 198 |
. . 3
|
| 14 | 7 | sselda 3184 |
. . . . 5
|
| 15 | 5 | adantr 276 |
. . . . 5
|
| 16 | 14, 15 | lenltd 8161 |
. . . 4
|
| 17 | 16 | ralbidva 2493 |
. . 3
|
| 18 | 13, 17 | bitr4d 191 |
. 2
|
| 19 | breq1 4037 |
. . 3
| |
| 20 | 19 | cbvralv 2729 |
. 2
|
| 21 | 18, 20 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-po 4332 df-iso 4333 df-xp 4670 df-cnv 4672 df-iota 5220 df-riota 5880 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: suprzclex 9441 suplociccex 14945 |
| Copyright terms: Public domain | W3C validator |