ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprleubex Unicode version

Theorem suprleubex 8913
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
suprubex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprubex.ss  |-  ( ph  ->  A  C_  RR )
suprlubex.b  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
suprleubex  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  z  <_  B ) )
Distinct variable groups:    x, A, y, z    ph, x    z, B
Allowed substitution hints:    ph( y, z)    B( x, y)

Proof of Theorem suprleubex
Dummy variables  f  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8039 . . . . . . . 8  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 suprubex.ex . . . . . . 7  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supclti 6999 . . . . . 6  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
5 suprlubex.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
64, 5lenltd 8077 . . . . 5  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  -.  B  <  sup ( A ,  RR ,  <  ) ) )
7 suprubex.ss . . . . . 6  |-  ( ph  ->  A  C_  RR )
83, 7, 5suprnubex 8912 . . . . 5  |-  ( ph  ->  ( -.  B  <  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  -.  B  <  z ) )
96, 8bitrd 188 . . . 4  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  -.  B  <  z ) )
10 breq2 4009 . . . . . 6  |-  ( w  =  z  ->  ( B  <  w  <->  B  <  z ) )
1110notbid 667 . . . . 5  |-  ( w  =  z  ->  ( -.  B  <  w  <->  -.  B  <  z ) )
1211cbvralv 2705 . . . 4  |-  ( A. w  e.  A  -.  B  <  w  <->  A. z  e.  A  -.  B  <  z )
139, 12bitr4di 198 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. w  e.  A  -.  B  <  w ) )
147sselda 3157 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  RR )
155adantr 276 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  B  e.  RR )
1614, 15lenltd 8077 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  (
w  <_  B  <->  -.  B  <  w ) )
1716ralbidva 2473 . . 3  |-  ( ph  ->  ( A. w  e.  A  w  <_  B  <->  A. w  e.  A  -.  B  <  w ) )
1813, 17bitr4d 191 . 2  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. w  e.  A  w  <_  B ) )
19 breq1 4008 . . 3  |-  ( w  =  z  ->  (
w  <_  B  <->  z  <_  B ) )
2019cbvralv 2705 . 2  |-  ( A. w  e.  A  w  <_  B  <->  A. z  e.  A  z  <_  B )
2118, 20bitrdi 196 1  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  z  <_  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   class class class wbr 4005   supcsup 6983   RRcr 7812    < clt 7994    <_ cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-po 4298  df-iso 4299  df-xp 4634  df-cnv 4636  df-iota 5180  df-riota 5833  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000
This theorem is referenced by:  suprzclex  9353  suplociccex  14188
  Copyright terms: Public domain W3C validator