Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suprleubex | Unicode version |
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
suprubex.ex | |
suprubex.ss | |
suprlubex.b |
Ref | Expression |
---|---|
suprleubex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 7978 | . . . . . . . 8 | |
2 | 1 | adantl 275 | . . . . . . 7 |
3 | suprubex.ex | . . . . . . 7 | |
4 | 2, 3 | supclti 6963 | . . . . . 6 |
5 | suprlubex.b | . . . . . 6 | |
6 | 4, 5 | lenltd 8016 | . . . . 5 |
7 | suprubex.ss | . . . . . 6 | |
8 | 3, 7, 5 | suprnubex 8848 | . . . . 5 |
9 | 6, 8 | bitrd 187 | . . . 4 |
10 | breq2 3986 | . . . . . 6 | |
11 | 10 | notbid 657 | . . . . 5 |
12 | 11 | cbvralv 2692 | . . . 4 |
13 | 9, 12 | bitr4di 197 | . . 3 |
14 | 7 | sselda 3142 | . . . . 5 |
15 | 5 | adantr 274 | . . . . 5 |
16 | 14, 15 | lenltd 8016 | . . . 4 |
17 | 16 | ralbidva 2462 | . . 3 |
18 | 13, 17 | bitr4d 190 | . 2 |
19 | breq1 3985 | . . 3 | |
20 | 19 | cbvralv 2692 | . 2 |
21 | 18, 20 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wcel 2136 wral 2444 wrex 2445 wss 3116 class class class wbr 3982 csup 6947 cr 7752 clt 7933 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-po 4274 df-iso 4275 df-xp 4610 df-cnv 4612 df-iota 5153 df-riota 5798 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: suprzclex 9289 suplociccex 13243 |
Copyright terms: Public domain | W3C validator |