| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr2a | GIF version | ||
| Description: A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr2a | ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem9 6377 | . . 3 ⊢ (𝐴 ∈ dom recs(𝐺) → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴))) |
| 3 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 4 | 3 | dmeqi 4867 | . . 3 ⊢ dom 𝐹 = dom recs(𝐺) |
| 5 | 2, 4 | eleq2s 2291 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴))) |
| 6 | 3 | fveq1i 5559 | . 2 ⊢ (𝐹‘𝐴) = (recs(𝐺)‘𝐴) |
| 7 | 3 | reseq1i 4942 | . . 3 ⊢ (𝐹 ↾ 𝐴) = (recs(𝐺) ↾ 𝐴) |
| 8 | 7 | fveq2i 5561 | . 2 ⊢ (𝐺‘(𝐹 ↾ 𝐴)) = (𝐺‘(recs(𝐺) ↾ 𝐴)) |
| 9 | 5, 6, 8 | 3eqtr4g 2254 | 1 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Oncon0 4398 dom cdm 4663 ↾ cres 4665 Fn wfn 5253 ‘cfv 5258 recscrecs 6362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-recs 6363 |
| This theorem is referenced by: tfr0 6381 tfri2d 6394 tfrcl 6422 tfri2 6424 frecsuclem 6464 |
| Copyright terms: Public domain | W3C validator |