ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr2a GIF version

Theorem tfr2a 6218
Description: A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2a (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))

Proof of Theorem tfr2a
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem9 6216 . . 3 (𝐴 ∈ dom recs(𝐺) → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴)))
3 tfr.1 . . . 4 𝐹 = recs(𝐺)
43dmeqi 4740 . . 3 dom 𝐹 = dom recs(𝐺)
52, 4eleq2s 2234 . 2 (𝐴 ∈ dom 𝐹 → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴)))
63fveq1i 5422 . 2 (𝐹𝐴) = (recs(𝐺)‘𝐴)
73reseq1i 4815 . . 3 (𝐹𝐴) = (recs(𝐺) ↾ 𝐴)
87fveq2i 5424 . 2 (𝐺‘(𝐹𝐴)) = (𝐺‘(recs(𝐺) ↾ 𝐴))
95, 6, 83eqtr4g 2197 1 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  Oncon0 4285  dom cdm 4539  cres 4541   Fn wfn 5118  cfv 5123  recscrecs 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-recs 6202
This theorem is referenced by:  tfr0  6220  tfri2d  6233  tfrcl  6261  tfri2  6263  frecsuclem  6303
  Copyright terms: Public domain W3C validator