| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfr2a | GIF version | ||
| Description: A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr2a | ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem9 6471 | . . 3 ⊢ (𝐴 ∈ dom recs(𝐺) → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴))) |
| 3 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 4 | 3 | dmeqi 4924 | . . 3 ⊢ dom 𝐹 = dom recs(𝐺) |
| 5 | 2, 4 | eleq2s 2324 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → (recs(𝐺)‘𝐴) = (𝐺‘(recs(𝐺) ↾ 𝐴))) |
| 6 | 3 | fveq1i 5630 | . 2 ⊢ (𝐹‘𝐴) = (recs(𝐺)‘𝐴) |
| 7 | 3 | reseq1i 5001 | . . 3 ⊢ (𝐹 ↾ 𝐴) = (recs(𝐺) ↾ 𝐴) |
| 8 | 7 | fveq2i 5632 | . 2 ⊢ (𝐺‘(𝐹 ↾ 𝐴)) = (𝐺‘(recs(𝐺) ↾ 𝐴)) |
| 9 | 5, 6, 8 | 3eqtr4g 2287 | 1 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = (𝐺‘(𝐹 ↾ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 Oncon0 4454 dom cdm 4719 ↾ cres 4721 Fn wfn 5313 ‘cfv 5318 recscrecs 6456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-recs 6457 |
| This theorem is referenced by: tfr0 6475 tfri2d 6488 tfrcl 6516 tfri2 6518 frecsuclem 6558 |
| Copyright terms: Public domain | W3C validator |