![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrfun | GIF version |
Description: Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.) |
Ref | Expression |
---|---|
tfrfun | ⊢ Fun recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . 2 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem7 6341 | 1 ⊢ Fun recs(𝐹) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 {cab 2175 ∀wral 2468 ∃wrex 2469 Oncon0 4381 ↾ cres 4646 Fun wfun 5229 Fn wfn 5230 ‘cfv 5235 recscrecs 6328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-res 4656 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-recs 6329 |
This theorem is referenced by: tfr1onlembfn 6368 tfr1onlemubacc 6370 tfri1dALT 6375 tfrcllembfn 6381 tfrcllemubacc 6383 tfrcl 6388 frecex 6418 frecfun 6419 frecfcllem 6428 frecsuclem 6430 |
Copyright terms: Public domain | W3C validator |