![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpspropd | GIF version |
Description: A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tpspropd.1 | ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
tpspropd.2 | ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
Ref | Expression |
---|---|
tpspropd | ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpspropd.2 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | |
2 | tpspropd.1 | . . . 4 ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) | |
3 | 2 | fveq2d 5559 | . . 3 ⊢ (𝜑 → (TopOn‘(Base‘𝐾)) = (TopOn‘(Base‘𝐿))) |
4 | 1, 3 | eleq12d 2264 | . 2 ⊢ (𝜑 → ((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿)))) |
5 | eqid 2193 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | eqid 2193 | . . 3 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
7 | 5, 6 | istps 14211 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
8 | eqid 2193 | . . 3 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
9 | eqid 2193 | . . 3 ⊢ (TopOpen‘𝐿) = (TopOpen‘𝐿) | |
10 | 8, 9 | istps 14211 | . 2 ⊢ (𝐿 ∈ TopSp ↔ (TopOpen‘𝐿) ∈ (TopOn‘(Base‘𝐿))) |
11 | 4, 7, 10 | 3bitr4g 223 | 1 ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 Basecbs 12621 TopOpenctopn 12854 TopOnctopon 14189 TopSpctps 14209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-ndx 12624 df-slot 12625 df-base 12627 df-tset 12717 df-rest 12855 df-topn 12856 df-top 14177 df-topon 14190 df-topsp 14210 |
This theorem is referenced by: xmspropd 14656 |
Copyright terms: Public domain | W3C validator |