ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0split Unicode version

Theorem nn0split 10071
Description: Express the set of nonnegative integers as the disjoint (see nn0disj 10073) union of the first  N  +  1 values and the rest. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0split  |-  ( N  e.  NN0  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) )

Proof of Theorem nn0split
StepHypRef Expression
1 nn0uz 9500 . . 3  |-  NN0  =  ( ZZ>= `  0 )
21a1i 9 . 2  |-  ( N  e.  NN0  ->  NN0  =  ( ZZ>= `  0 )
)
3 peano2nn0 9154 . . . 4  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
43, 1eleqtrdi 2259 . . 3  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  0 )
)
5 uzsplit 10027 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
64, 5syl 14 . 2  |-  ( N  e.  NN0  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
7 nn0cn 9124 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  CC )
8 pncan1 8275 . . . . 5  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
97, 8syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
109oveq2d 5858 . . 3  |-  ( N  e.  NN0  ->  ( 0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
1110uneq1d 3275 . 2  |-  ( N  e.  NN0  ->  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) )  =  ( ( 0 ... N
)  u.  ( ZZ>= `  ( N  +  1
) ) ) )
122, 6, 113eqtrd 2202 1  |-  ( N  e.  NN0  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    u. cun 3114   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   NN0cn0 9114   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator