ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0split Unicode version

Theorem nn0split 10166
Description: Express the set of nonnegative integers as the disjoint (see nn0disj 10168) union of the first  N  +  1 values and the rest. (Contributed by AV, 8-Nov-2019.)
Assertion
Ref Expression
nn0split  |-  ( N  e.  NN0  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) )

Proof of Theorem nn0split
StepHypRef Expression
1 nn0uz 9592 . . 3  |-  NN0  =  ( ZZ>= `  0 )
21a1i 9 . 2  |-  ( N  e.  NN0  ->  NN0  =  ( ZZ>= `  0 )
)
3 peano2nn0 9246 . . . 4  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
43, 1eleqtrdi 2282 . . 3  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  0 )
)
5 uzsplit 10122 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
64, 5syl 14 . 2  |-  ( N  e.  NN0  ->  ( ZZ>= ` 
0 )  =  ( ( 0 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
7 nn0cn 9216 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  CC )
8 pncan1 8364 . . . . 5  |-  ( N  e.  CC  ->  (
( N  +  1 )  -  1 )  =  N )
97, 8syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
109oveq2d 5912 . . 3  |-  ( N  e.  NN0  ->  ( 0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
1110uneq1d 3303 . 2  |-  ( N  e.  NN0  ->  ( ( 0 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) )  =  ( ( 0 ... N
)  u.  ( ZZ>= `  ( N  +  1
) ) ) )
122, 6, 113eqtrd 2226 1  |-  ( N  e.  NN0  ->  NN0  =  ( ( 0 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    u. cun 3142   ` cfv 5235  (class class class)co 5896   CCcc 7839   0cc0 7841   1c1 7842    + caddc 7844    - cmin 8158   NN0cn0 9206   ZZ>=cuz 9558   ...cfz 10038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator