ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid2 Unicode version

Theorem xaddid2 10055
Description: Extended real version of addlid 8281. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid2  |-  ( A  e.  RR*  ->  ( 0 +e A )  =  A )

Proof of Theorem xaddid2
StepHypRef Expression
1 0xr 8189 . . 3  |-  0  e.  RR*
2 xaddcom 10053 . . 3  |-  ( ( 0  e.  RR*  /\  A  e.  RR* )  ->  (
0 +e A )  =  ( A +e 0 ) )
31, 2mpan 424 . 2  |-  ( A  e.  RR*  ->  ( 0 +e A )  =  ( A +e 0 ) )
4 xaddid1 10054 . 2  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
53, 4eqtrd 2262 1  |-  ( A  e.  RR*  ->  ( 0 +e A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6000   0cc0 7995   RR*cxr 8176   +ecxad 9962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-addcom 8095  ax-0id 8103  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-xadd 9965
This theorem is referenced by:  xaddge0  10070  xsubge0  10073  xrbdtri  11782
  Copyright terms: Public domain W3C validator