ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid2 Unicode version

Theorem xaddid2 9866
Description: Extended real version of addlid 8099. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid2  |-  ( A  e.  RR*  ->  ( 0 +e A )  =  A )

Proof of Theorem xaddid2
StepHypRef Expression
1 0xr 8007 . . 3  |-  0  e.  RR*
2 xaddcom 9864 . . 3  |-  ( ( 0  e.  RR*  /\  A  e.  RR* )  ->  (
0 +e A )  =  ( A +e 0 ) )
31, 2mpan 424 . 2  |-  ( A  e.  RR*  ->  ( 0 +e A )  =  ( A +e 0 ) )
4 xaddid1 9865 . 2  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
53, 4eqtrd 2210 1  |-  ( A  e.  RR*  ->  ( 0 +e A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148  (class class class)co 5878   0cc0 7814   RR*cxr 7994   +ecxad 9773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911  ax-addcom 7914  ax-0id 7922  ax-rnegex 7923
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-xadd 9776
This theorem is referenced by:  xaddge0  9881  xsubge0  9884  xrbdtri  11287
  Copyright terms: Public domain W3C validator