ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xadd4d Unicode version

Theorem xadd4d 9954
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8190. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
xadd4d.2  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
xadd4d.3  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
xadd4d.4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
Assertion
Ref Expression
xadd4d  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
2 xadd4d.2 . . . 4  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
3 xadd4d.4 . . . 4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
4 xaddass 9938 . . . 4  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( C +e B ) +e D )  =  ( C +e ( B +e D ) ) )
51, 2, 3, 4syl3anc 1249 . . 3  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( C +e
( B +e
D ) ) )
65oveq2d 5935 . 2  |-  ( ph  ->  ( A +e
( ( C +e B ) +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
7 xadd4d.1 . . . 4  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
81simpld 112 . . . . 5  |-  ( ph  ->  C  e.  RR* )
93simpld 112 . . . . 5  |-  ( ph  ->  D  e.  RR* )
108, 9xaddcld 9953 . . . 4  |-  ( ph  ->  ( C +e
D )  e.  RR* )
11 xaddnemnf 9926 . . . . 5  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( C +e D )  =/= -oo )
121, 3, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( C +e
D )  =/= -oo )
13 xaddass 9938 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( ( C +e D )  e. 
RR*  /\  ( C +e D )  =/= -oo ) )  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
147, 2, 10, 12, 13syl112anc 1253 . . 3  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
152simpld 112 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
16 xaddcom 9930 . . . . . . 7  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C +e B )  =  ( B +e C ) )
178, 15, 16syl2anc 411 . . . . . 6  |-  ( ph  ->  ( C +e
B )  =  ( B +e C ) )
1817oveq1d 5934 . . . . 5  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( ( B +e C ) +e D ) )
19 xaddass 9938 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( B +e C ) +e D )  =  ( B +e ( C +e D ) ) )
202, 1, 3, 19syl3anc 1249 . . . . 5  |-  ( ph  ->  ( ( B +e C ) +e D )  =  ( B +e
( C +e
D ) ) )
2118, 20eqtr2d 2227 . . . 4  |-  ( ph  ->  ( B +e
( C +e
D ) )  =  ( ( C +e B ) +e D ) )
2221oveq2d 5935 . . 3  |-  ( ph  ->  ( A +e
( B +e
( C +e
D ) ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2314, 22eqtrd 2226 . 2  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2415, 9xaddcld 9953 . . 3  |-  ( ph  ->  ( B +e
D )  e.  RR* )
25 xaddnemnf 9926 . . . 4  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( B +e D )  =/= -oo )
262, 3, 25syl2anc 411 . . 3  |-  ( ph  ->  ( B +e
D )  =/= -oo )
27 xaddass 9938 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( ( B +e D )  e. 
RR*  /\  ( B +e D )  =/= -oo ) )  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
287, 1, 24, 26, 27syl112anc 1253 . 2  |-  ( ph  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
296, 23, 283eqtr4d 2236 1  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364  (class class class)co 5919   -oocmnf 8054   RR*cxr 8055   +ecxad 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-addcom 7974  ax-addass 7976  ax-rnegex 7983
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-xadd 9842
This theorem is referenced by:  xnn0add4d  9955
  Copyright terms: Public domain W3C validator