ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xadd4d Unicode version

Theorem xadd4d 9899
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8140. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
xadd4d.2  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
xadd4d.3  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
xadd4d.4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
Assertion
Ref Expression
xadd4d  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
2 xadd4d.2 . . . 4  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
3 xadd4d.4 . . . 4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
4 xaddass 9883 . . . 4  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( C +e B ) +e D )  =  ( C +e ( B +e D ) ) )
51, 2, 3, 4syl3anc 1248 . . 3  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( C +e
( B +e
D ) ) )
65oveq2d 5904 . 2  |-  ( ph  ->  ( A +e
( ( C +e B ) +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
7 xadd4d.1 . . . 4  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
81simpld 112 . . . . 5  |-  ( ph  ->  C  e.  RR* )
93simpld 112 . . . . 5  |-  ( ph  ->  D  e.  RR* )
108, 9xaddcld 9898 . . . 4  |-  ( ph  ->  ( C +e
D )  e.  RR* )
11 xaddnemnf 9871 . . . . 5  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( C +e D )  =/= -oo )
121, 3, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( C +e
D )  =/= -oo )
13 xaddass 9883 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( ( C +e D )  e. 
RR*  /\  ( C +e D )  =/= -oo ) )  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
147, 2, 10, 12, 13syl112anc 1252 . . 3  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
152simpld 112 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
16 xaddcom 9875 . . . . . . 7  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C +e B )  =  ( B +e C ) )
178, 15, 16syl2anc 411 . . . . . 6  |-  ( ph  ->  ( C +e
B )  =  ( B +e C ) )
1817oveq1d 5903 . . . . 5  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( ( B +e C ) +e D ) )
19 xaddass 9883 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( B +e C ) +e D )  =  ( B +e ( C +e D ) ) )
202, 1, 3, 19syl3anc 1248 . . . . 5  |-  ( ph  ->  ( ( B +e C ) +e D )  =  ( B +e
( C +e
D ) ) )
2118, 20eqtr2d 2221 . . . 4  |-  ( ph  ->  ( B +e
( C +e
D ) )  =  ( ( C +e B ) +e D ) )
2221oveq2d 5904 . . 3  |-  ( ph  ->  ( A +e
( B +e
( C +e
D ) ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2314, 22eqtrd 2220 . 2  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2415, 9xaddcld 9898 . . 3  |-  ( ph  ->  ( B +e
D )  e.  RR* )
25 xaddnemnf 9871 . . . 4  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( B +e D )  =/= -oo )
262, 3, 25syl2anc 411 . . 3  |-  ( ph  ->  ( B +e
D )  =/= -oo )
27 xaddass 9883 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( ( B +e D )  e. 
RR*  /\  ( B +e D )  =/= -oo ) )  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
287, 1, 24, 26, 27syl112anc 1252 . 2  |-  ( ph  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
296, 23, 283eqtr4d 2230 1  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158    =/= wne 2357  (class class class)co 5888   -oocmnf 8004   RR*cxr 8005   +ecxad 9784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922  ax-addcom 7925  ax-addass 7927  ax-rnegex 7934
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-xr 8010  df-xadd 9787
This theorem is referenced by:  xnn0add4d  9900
  Copyright terms: Public domain W3C validator