Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xadd4d | Unicode version |
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8067. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
Ref | Expression |
---|---|
xadd4d.1 | |
xadd4d.2 | |
xadd4d.3 | |
xadd4d.4 |
Ref | Expression |
---|---|
xadd4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd4d.3 | . . . 4 | |
2 | xadd4d.2 | . . . 4 | |
3 | xadd4d.4 | . . . 4 | |
4 | xaddass 9805 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3anc 1228 | . . 3 |
6 | 5 | oveq2d 5858 | . 2 |
7 | xadd4d.1 | . . . 4 | |
8 | 1 | simpld 111 | . . . . 5 |
9 | 3 | simpld 111 | . . . . 5 |
10 | 8, 9 | xaddcld 9820 | . . . 4 |
11 | xaddnemnf 9793 | . . . . 5 | |
12 | 1, 3, 11 | syl2anc 409 | . . . 4 |
13 | xaddass 9805 | . . . 4 | |
14 | 7, 2, 10, 12, 13 | syl112anc 1232 | . . 3 |
15 | 2 | simpld 111 | . . . . . . 7 |
16 | xaddcom 9797 | . . . . . . 7 | |
17 | 8, 15, 16 | syl2anc 409 | . . . . . 6 |
18 | 17 | oveq1d 5857 | . . . . 5 |
19 | xaddass 9805 | . . . . . 6 | |
20 | 2, 1, 3, 19 | syl3anc 1228 | . . . . 5 |
21 | 18, 20 | eqtr2d 2199 | . . . 4 |
22 | 21 | oveq2d 5858 | . . 3 |
23 | 14, 22 | eqtrd 2198 | . 2 |
24 | 15, 9 | xaddcld 9820 | . . 3 |
25 | xaddnemnf 9793 | . . . 4 | |
26 | 2, 3, 25 | syl2anc 409 | . . 3 |
27 | xaddass 9805 | . . 3 | |
28 | 7, 1, 24, 26, 27 | syl112anc 1232 | . 2 |
29 | 6, 23, 28 | 3eqtr4d 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wne 2336 (class class class)co 5842 cmnf 7931 cxr 7932 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-addcom 7853 ax-addass 7855 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xadd 9709 |
This theorem is referenced by: xnn0add4d 9822 |
Copyright terms: Public domain | W3C validator |