Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xadd4d | Unicode version |
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8088. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
Ref | Expression |
---|---|
xadd4d.1 | |
xadd4d.2 | |
xadd4d.3 | |
xadd4d.4 |
Ref | Expression |
---|---|
xadd4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd4d.3 | . . . 4 | |
2 | xadd4d.2 | . . . 4 | |
3 | xadd4d.4 | . . . 4 | |
4 | xaddass 9826 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3anc 1233 | . . 3 |
6 | 5 | oveq2d 5869 | . 2 |
7 | xadd4d.1 | . . . 4 | |
8 | 1 | simpld 111 | . . . . 5 |
9 | 3 | simpld 111 | . . . . 5 |
10 | 8, 9 | xaddcld 9841 | . . . 4 |
11 | xaddnemnf 9814 | . . . . 5 | |
12 | 1, 3, 11 | syl2anc 409 | . . . 4 |
13 | xaddass 9826 | . . . 4 | |
14 | 7, 2, 10, 12, 13 | syl112anc 1237 | . . 3 |
15 | 2 | simpld 111 | . . . . . . 7 |
16 | xaddcom 9818 | . . . . . . 7 | |
17 | 8, 15, 16 | syl2anc 409 | . . . . . 6 |
18 | 17 | oveq1d 5868 | . . . . 5 |
19 | xaddass 9826 | . . . . . 6 | |
20 | 2, 1, 3, 19 | syl3anc 1233 | . . . . 5 |
21 | 18, 20 | eqtr2d 2204 | . . . 4 |
22 | 21 | oveq2d 5869 | . . 3 |
23 | 14, 22 | eqtrd 2203 | . 2 |
24 | 15, 9 | xaddcld 9841 | . . 3 |
25 | xaddnemnf 9814 | . . . 4 | |
26 | 2, 3, 25 | syl2anc 409 | . . 3 |
27 | xaddass 9826 | . . 3 | |
28 | 7, 1, 24, 26, 27 | syl112anc 1237 | . 2 |
29 | 6, 23, 28 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wne 2340 (class class class)co 5853 cmnf 7952 cxr 7953 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-addcom 7874 ax-addass 7876 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-xadd 9730 |
This theorem is referenced by: xnn0add4d 9843 |
Copyright terms: Public domain | W3C validator |