ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xadd4d Unicode version

Theorem xadd4d 10081
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8315. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
xadd4d.2  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
xadd4d.3  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
xadd4d.4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
Assertion
Ref Expression
xadd4d  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4  |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
2 xadd4d.2 . . . 4  |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
3 xadd4d.4 . . . 4  |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
)
4 xaddass 10065 . . . 4  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( C +e B ) +e D )  =  ( C +e ( B +e D ) ) )
51, 2, 3, 4syl3anc 1271 . . 3  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( C +e
( B +e
D ) ) )
65oveq2d 6017 . 2  |-  ( ph  ->  ( A +e
( ( C +e B ) +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
7 xadd4d.1 . . . 4  |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo )
)
81simpld 112 . . . . 5  |-  ( ph  ->  C  e.  RR* )
93simpld 112 . . . . 5  |-  ( ph  ->  D  e.  RR* )
108, 9xaddcld 10080 . . . 4  |-  ( ph  ->  ( C +e
D )  e.  RR* )
11 xaddnemnf 10053 . . . . 5  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( C +e D )  =/= -oo )
121, 3, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( C +e
D )  =/= -oo )
13 xaddass 10065 . . . 4  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( ( C +e D )  e. 
RR*  /\  ( C +e D )  =/= -oo ) )  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
147, 2, 10, 12, 13syl112anc 1275 . . 3  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( B +e ( C +e D ) ) ) )
152simpld 112 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
16 xaddcom 10057 . . . . . . 7  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C +e B )  =  ( B +e C ) )
178, 15, 16syl2anc 411 . . . . . 6  |-  ( ph  ->  ( C +e
B )  =  ( B +e C ) )
1817oveq1d 6016 . . . . 5  |-  ( ph  ->  ( ( C +e B ) +e D )  =  ( ( B +e C ) +e D ) )
19 xaddass 10065 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( ( B +e C ) +e D )  =  ( B +e ( C +e D ) ) )
202, 1, 3, 19syl3anc 1271 . . . . 5  |-  ( ph  ->  ( ( B +e C ) +e D )  =  ( B +e
( C +e
D ) ) )
2118, 20eqtr2d 2263 . . . 4  |-  ( ph  ->  ( B +e
( C +e
D ) )  =  ( ( C +e B ) +e D ) )
2221oveq2d 6017 . . 3  |-  ( ph  ->  ( A +e
( B +e
( C +e
D ) ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2314, 22eqtrd 2262 . 2  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( A +e ( ( C +e B ) +e D ) ) )
2415, 9xaddcld 10080 . . 3  |-  ( ph  ->  ( B +e
D )  e.  RR* )
25 xaddnemnf 10053 . . . 4  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( B +e D )  =/= -oo )
262, 3, 25syl2anc 411 . . 3  |-  ( ph  ->  ( B +e
D )  =/= -oo )
27 xaddass 10065 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )  /\  ( ( B +e D )  e. 
RR*  /\  ( B +e D )  =/= -oo ) )  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
287, 1, 24, 26, 27syl112anc 1275 . 2  |-  ( ph  ->  ( ( A +e C ) +e ( B +e D ) )  =  ( A +e ( C +e ( B +e D ) ) ) )
296, 23, 283eqtr4d 2272 1  |-  ( ph  ->  ( ( A +e B ) +e ( C +e D ) )  =  ( ( A +e C ) +e ( B +e D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400  (class class class)co 6001   -oocmnf 8179   RR*cxr 8180   +ecxad 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-addcom 8099  ax-addass 8101  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-xadd 9969
This theorem is referenced by:  xnn0add4d  10082
  Copyright terms: Public domain W3C validator